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Introduction

Welcome toMaths for Science There are many reasons for studying maths and
a compelling motivation for many people is that it provides a way of representing
and investigating the nature of the real world. Real world contexts could include
population statistics, or economics, or engineering. Here, the context is ‘science’ in
its broadest sense.

Much of science is couched in the language of mathematics. Nearly all courses
in science will assume some mathematical skills and techniques. It is clearly not
possible foMaths for Scienc discuss all the mathematical techniques you might
need to pursue your study of science to degree level, but by the end of it you will
have acquired a good array of basic mathematical tools and confidence in using
them. Equally importantly, you will have a foundation that should make it much
easier to learn further mathematics if and when required.

Maths is in some sense a language with its own alphabet, vocabulary and ‘rules of
grammar’. With any language the only route to fluency is use and practice, but even-
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tually the process of constructing or understanding sentences becomes automatic
and one can then concentrate wholly on the message behind the words. You should
aim to develop a similar confidence and fluency in carrying out certain important
mathematical operations. There are few shortcuts: the route requires practice, prac-
tice and more practice! Keep paper, a pencil and your calculator to hand as you
study, and use them constantly. You may find it helpful to write out notes and even
to rework some of the examples given in the text as you go along. You will see that
there are lots of questions seeded through the text and at the ends of seaiions;
should work through each question as you reacliibks are provided to the solu-
tions, but don’'t be tempted to look at these until you have made a serious attempt
at working out the answer for yourself. If you have solved all parts of a question
successfully on your own, then you are ready to move on.

The focus oMaths for Sciences maths and not science, so you are not expected to
bring specific prior knowledge of any particular branch of science. However, most
of the examples and questions involve the application of mathematical tools to a real
scientific purpose, so you will probably discover some interesting science along the
way. Enjoy the journey!
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Starting Points

The point to start from is always what you already know. It is assumed that you
are familiar with the everyday usage of the basic arithmetic operations of addition,
subtraction, multiplication, division and the use of a calculator to carry them out,
decimal notation (e.g. for money), the representation of an idea by a formula (such
as Einstein’s famou& = md), and the interpretation of information on a chart

or graph (of the kind that might, for instance, accompany a TV news item about
economic trends). Beyond that, you will find that many of the early chapters begin
with a little revision of ideas and skills that you will probably already have met.
This chapter, which concentrates on ideas about numbers — including fractions and
powers — and the use of your calculator, is slightlffetient from later ones in that

it covers concepts that are the basis for what is to follow in the rest of the course, so
more of it may constitute revision.
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If the points covered in the rest of this chapter are completely familiar, you need not
spend very long on them, but they are worth checking out thoroughly as they are the
foundation of much that is to come laterMuaths for ScienceEven if it is only for

the sake of revision, make sure you understand all the emboldened terms and test
your own skills against the learning outcomes by doing the numbered questions. If
any of the material is new to you, time spent mastering it now will pay rich dividends
later.

1.1 Numbers

‘Numbers rule the universe’ (Pythagoras)

Numbers are the bedrock of mathematics, underlying measurement, calculation and
statistics, among other branches of maths. Everybody is familiar with the counting
numbers (1, 2, 3, etc.), but scientists also make use of other kinds of numbers, so it
is appropriate to begin this course with some revision of numbers of various sorts
and the ways in which they may be combined.
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1.1.1 Df#fferent types of number

One convenient way to represent numbers is on a ‘number line’, as shown in Fig-
ure 1.1. A ‘step’ to the right is taken by adding 1 to the previous number and a step
to the left by subtracting 1. Positive and negative whole numbers, including zero,
are calledntegers

zero

negative numbers positive numbers

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 1.1: A number line showing the integers frefto 5.

Fractions(formed by dividing one integer by another) and their equivalent decimal
numbers fit on the number line between the integers. For example, (bg.isO
halfway between 0 and 1, anel.5 is halfway betweer-2 and—3. A number in
which there is a decimal point (e.g.50 25, 10035, etc.) is said to be written in
decimal notation
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Figure 1.2 shows part of a thermometer. The inset portion
covers a range from abowt.4 °C to-5.6 °C, which might
represent the variation in temperature over a 24-hour period
during the winter in the UK.

This illustrates how subdivision of the number line forms
the basis of a scale for measuring physical quantities that
can vary continuously. In this case, the scale between the
integralvalues is divided into tenths. (Note that, in order to
describe a physical quantity the numerical value has to be
accompanied by a unit of measurement, in this case the de-
gree Celsius. This aspect of measuring is covered in Chap-
ters 2 and 3.)

In the case of a fraction such ézg' the decimal equivalent
is exact to twaplaces of decimal§.e. two digits after the
decimal point):

213

— =852
25

This decimal equivalent c%%?’ cannot be given to more than
two places of decimals except by putting zeros on the end
(e.g. 8520 000), so it is said to terminate at the digit 2.

=)
§

(@ U (b) ™

Figure 1.2: Part of a thermometer.
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However, if you work out a fraction Iiké on your calculator you will get a decimal

like 0.333 333 333 (the number of digits displayed will depend on the make of your
calculator). 555 will come out as 123123123, andy as 7777777 778. These
decimals in fact recur (i.e. repeat themselves) for ever, so they are called infinite
recurring decimalsThe calculator truncates them when it runs out of digits on the
display, and in the case of the final example also ‘rounds up’ the last digit from a
7 to an 8. In scientific calculations, it is usually totally inappropriate to quote so
many digits after the decimal point and in Chapter 2 we will consider the rules for
deciding how to round b such numbers in real situations.

Fractions and decimals are grouped together as the so-catledal numbersAll

the rational numbers result in a decimal that either terminates or recurs. How-
ever, there are also numbers whose decimal equivalent neither terminates nor recurs.
These numbers cannot be obtained by dividing one integer by another, so they are
calledirrational numbers Well-known examples are/2 (the number that multi-

plied by itself gives 2, said as ‘the square root of 2’) and (vhich is defined as

the number obtained by dividing the circumference of a circle by its diameter). This
would be an appropriate moment to check that you know how to ugeb&on on

your calculator. You should be able to get:

2xm=6.283185307
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market, each operating ftrently, it is impossible to state the exact sequence of
keystrokes you will need to carry out particular calculations. Whenever you meet
a new type of mathematical operation, you should therefore check that you know
how to perform it on your own calculator and refer to the manufacturer’s instruction
book if necessary. A calculator symbol in the margin will alert you to the points at
which you particularly need to carry out this kind of check.

Note that as there are so many makes of scientific and graphics calculators on the ‘

All the integers, rational and irrational numbers can be placed somewhere on the
number line, so they are grouped together asrda numbers All the numbers

you will use in this course will be real. However, it may interest you to know
that there are alsmnaginary numberbased on the square root of minus 1, which

is usually represented by the symbholNumbers made up of real and imaginary
parts, such as (3 2i) are known agomplex numbersComplex numbers are used
quite extensively in science and have practical applications in telecommunications,
electrical engineering and the beautiful patterns of fractals.

In case hearing about all thesdtdrent types of numbers leads you to think that
straightforward ‘counting numbers’ hold little interest for scientiBisx 1.1shows

how a series of numbers, which mathematicians find interesting in their own right,
have also been found to describe intricate patterns of plant growth.
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Box 1.1 Fibonacci numbers

The sequence of numbers
0,1,1,2,35,8,13 21 34,55,89...

was first defined in 1202 by the Italian mathematician
Leonardo of Pisa, nicknamed Fibonacci. Each term|in
the sequence after the first two is obtained by adding
together the previoustwo 01 =1;1+1=2;1+2 =
3;2+3=05,etc.)

It is intriguing to discover that the spiral patterns of
plant growth correspond to pairs of numbers in this se-
ries, as illustrated in Figure 1.3.

Part (a) shows a pinecone with 8 parallel rows of bracts
spiralling gradually and 13 parallel rows of bracts spi-
ralling steeply.

Part (b) shows a sunflower head in which the seeds spi-  Figure 1.3: Fibonacci numbers in nature.
ral out from the centre: 55 rows clockwise and 89 rows
anticlockwise.
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1.1.2 Calculating with negative numbers

Many scientific quantities can take negative values. For example, chemical reac-
tions may either give out heat to the surroundings or absorb heat from the surround-
ings. Scientists adopt a convention that in the case of a heat-absorbing reaction, the
change in energy has a positive value. In the case of a heat-releasing reaction (such
as combustion), on the other hand, the energy change is negative. To be able to han-
dle quantities like this in scientific calculations it is essential to understand the rules
for performing thearithmetic operationgaddition, subtraction, multiplication and
division) when negative numbers are involved. If | amalgamate a credit card debt of
£100 with an overdraft of £150, | owe £250 in total:

£100 debt+ £150 debt= £250 debt

Just in terms of numbers, this is equivalent to writing:

(~100)+ (-150) = —250

Note from this example how brackets can be used to make it clear how numbers
and signs are associated. The rules for performing arithmetic operations with nega-
tive numbers are summarized by the examples in theAatmetic with negative
numbers! You should check that you are familiar with all the rules exemplified in
the box.
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Arithmetic with negative numbers

The numbers used as examples here are small integers between 1 and 10, but
could of course be any number. As is normally the case, positive numbers are
not preceded by & sign.

(-3)+5=2 3+(-4)=1 (=3) + (-3) = -6
(-5)-2=7 4-(-3)=7 (=5) - (—4) = -1
(-2)x 2= -4 3x(-2) =6 (-2) x (~2) = 4
(-3)+3=-1 3+ (-3)=-1 (-3)+ (-3) =1

Thinking about some of the examples in concrete terms may help to make sense of
them. For instance, taking money from a bank account that is already overdrawn in-
creases the amount of the debt (i.e. makes it ‘more negative’). Doubling an overdraft
produces an even larger debt (i.e. a bigger negative number).

Brackets are included to associate negative signs with particular numbers. For ex-
ample, 3+ (-4) means that{4) is being added to 3; this is equivalent to subtracting
4 from 3, with the result (1).

Before reading on, test your understanding of the rules by dQungstion 1.1
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Question 1.1

Without using your calculatomork out:

(@) (-3)x4 Answer
(b) (-10)-(-5) Answer
(c) 6+ (-2 Answer
(d) (-12)+ (-6) Answer

The examples given so far illustrate one important feature of both addition and mul-
tiplication: both these operations aremmutative This is just the mathematical
way of saying that if one adds two numbers then the result (callesiuimgis iden-

tical whichever number is written first. For example:

5+3=8and3+5=8
(-2)+3=1and 3+ (-2) =1

Similarly, in multiplying two numbers the result (called theoduc) is unchanged

if the order of the numbers is reversed. For instance:

5x 4= 20and 4x 5 = 20
(-3)x 4= -12 and 4x (-3) = 12
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Subtraction and division, on the other hand, are not commutative:

5-3=2but3-5=-2
8+4=2but4:+8=3

The commutativity of addition and multiplication may seem rather obvious when
applied to the counting numbers, but is worthy of attention because of its importance
in the algebraic manipulations that will be discussed in Chapter 4.

Worked example 1.And Question 1.2are two rather more realistic examples re-
quiring the use of arithmetic with negative numbers.

Back <« >
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Worked example 1.1

One of the hottest places on Earth is Death Valley, California, where an air
temperature of 56C has been recorded. Probably the coldest inhabited place is
the Siberian village of Oymyakon, where the temperature has falled26C.
What is the diference in temperature between these two extremes?

Answer

The diference in temperature may be worked out in two ways. The fjrst
method involves subtracting the lower temperature from the higher, i.6C56
(-72°C), which gives apositive difference of 128 Celsius degrees. This
is the amount by which Death Valley is hotter than Oymyakon. Alterna-
tively, it is equally valid to subtract the higher temperature from the lower, |.e.
-72°C - 56 °C, which gives anegativedifference of-128 Celsius degrees
This is equivalent to saying that Oymyakon is 128 Celsius degrees colder than
Death Valley.

This example shows that in scientific calculations involving negative numbers
it is important to keep the physical situation in mind.
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Question 1.2 Answer

The maximum temperature range within the oceans is 31.9 Celsius deg
This is a much smaller variation in temperature than that achievable for th
above a landmass, in part because the lowest ocean temperature is fixed
temperature at which seawater freezes. The highest recorded ocean ten
ture is 300 °C. What is the freezing point of seawater?

rees.
b air

at the
npera-

1.1.3 Working with negative numbers on a calculator

The calculations irQuestions 1.-and 1.2 were easy enough to work out by h

and,

but many of the calculations you will encounter in science will require the use of a
calculator. It is therefore important to check that you know how to input negative

numbers into your own calculator.

Take the following examples:

6+ (-8)=-2
4-(-3)=7
5x (-3) = 15
(-8)+(-2)=4

and make sure that you can carry out each sum on your calculator, obtaining the

correct sign on the display of the answer. With some makes of calculator you will
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be able to enter the expression on the left-hand side more or less as it is written, with
or without brackets. With other makes you may have to use a combination of the
arithmetic operation keys and thg¢— (or on some makes) button.
When you are confident that you can input negative numbers in association with the
first arithmetic operations, test your skill with Question 1.3.
Question 1.3
Making sure you input all the signs, use your calculator to work out the follqw-
ing:
(@) 117- (-38)+ (-286) Answer
(b) (-1624)+ (-29) Answer
(c) (-123)x (-24) Answer
There is, however, one case in which the calculator does not fully deal with signs,
and that case concerns square roots. Shjaare rooof 9’ is defined as the number
that multiplied by itself gives 9. One such number is 3:
3x3=9
and if you use your calculator to work o9 you will indeed obtain the answer 3.
However, it is also true that
-3x-3=9
Back | > 20
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So the square root of 9 is eitheB or —3. It is a mathematical convention that the
notation V9 means ‘the positive value of the square root of 9, and this is what your
calculator displays. In cases in which the negative value of the square root might be
relevant this is indicated by use of the sigriplus or minus) before the square root
sign, i.e.+ V9.

In Section 1.1.1the numbery2 was given as an example of an irrational number.
Check that you can use the square root button on your own calculator to get

V2 = 1.414 213562
(You may obtain more or fewer digits depending on the make and model of your

calculator. The fact that the number is irrational means that in any case it never
ends.)

Question
What is??

Answer

? — 0.745 355922

Be sure to check that you can obtain this value on your own calculator, by ensuring
that the calculator takes the square root dfeboredividing by 3. Otherwise, you

Back <« >
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will get the positive value of the square root%)fwhich is not the same at all!

\/g = 1290994 449

1.1.4 The number zero

Zero is a number to be careful about, especially when it is used in multiplication or
division.

If you try multiplying O by 6 on your calculator, you will get the answer 0. This
is hardly surprising. If we startfbwith nothing, it doesn’t matter how often we

multiply it, we still have nothing. The commutativity of multiplication shows that
6 x 0 is therefore also equal to 0, and your calculator will confirm this.

The result of multiplying any number by 0 is 0.

In a similar way, dividing O by any non-zero number gives zero.

Trying to divide by zero is more problematic. If you entee® into your calcu-

lator, you will get an error message. To understand why, imagine dividing 6 by
successively smaller and smaller numbers: the answers will get successively larger
and larger. The number by which we’re dividing approaches zero, the result of the
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division becomes too large for the calculator to cope with. Dividing by zero does
not produce a meaningful number and is to be avoided!

1.2 Fractions

With the increasing decimalization of everyday units of measurement, we use frac-
tions less than people used to. Nowadays adding eighths and sixteenths of inches is
about as much as you might need to do, and that only if you still have a ruler, or some
items in a toolbox, marked in inches. However the ability to add, subtract, multiply
and divide using numerical fractions is extremely importantiaths for Science
because it is the basis for the skill of manipulataigebraicfractions which will be
discussed in Chapter 4.

1.2.1 Using fractions

Fractions are characterized bynamerator(the number on top) and @&nomina-
tor (the number on the bottom). So in the fractiénthe numerator is 3 and the
denominator is 8.
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A pictorial representation, such as that in Figure 1.4, makes it obvious
that it is possible to have fractions which havéetient numerators and
denominators, but are nevertheless equal. The cake can be divided intc
two and the shaded half further sub-divided into two quarters or four
eighths, but half the cake still remains shaded. So the fracgpﬁlsand

g‘ all represent the same amount of the original cake, and can therefore
be described asquivalent fractions

tions:

The value of a fraction is unchanged if its numerator and denomi-
nator are both multiplied by the same number, or both divided|by
the same number.

In the case of the half cake, numerator and denominator have been mul-
tiplied by 2 to get the equivalent two quarters and again to get the equiv-
alent four eighths. In the following example of equivalent fractions,
other multiplying and dividing numbers have been used:

Figure 1.4 exemplifies the most fundamental rule associated with frac- : 5

6 2 8 10 . :
S 3" D~ 1E Figure 1.4: Sharing out half a

cake.

% is the simplest form in which this fraction may be expressed, i.e. the one in which
the numerator and denominator have the smallest possible value.
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A percentageneans a ‘number of parts per hundred’, so is equivalent to a fraction
in which the denominator is 100. For example, 50% is the sargsas

Question
Express 35% as a fraction of the simplest possible form.
Answer

35% is the same aﬁ% The value of the faction will be unchanged if th
numerator and denominator are both divided by the same number, and 3
100 can both be divided by 5. Doing this gives

O

35 _7
100 20

This is the simplest form in which the fraction can be expressed.

One way to convert a fraction to a percentage is to multiply top and bottom of the
fraction by whatever number is required to make the denominator equal to 100. For
instance:

1 _1x25_ 25
4 4x25 100

Hence}1 Is equivalent to 25%.
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In the first few sections of this course, all fractions have been written in theiorm
However, in most maths and science texts, you will find that the alternative form,
3/4, is also very common, so you have to become equally comfortable with both
systems and also have to be able to swap between them at will. From now on,
therefore, both notations will be used.

1.2.2 Adding and subtracting fractions

Suppose we want to add the two fractions shown below:

SO
4" 16

We cannot just add the 3 and the 7. The 3 represents 3 ‘quarters’ and the 7 represents
7 ‘sixteenths’, so adding the 3 to the 7 would be like trying to add 3 apples and 7
penguins!

In order to add or subtract two fractions, it is necessary for them both to have
the samalenominatorbottom line).

Back <« >
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Fractions with the same denominator are said to havenamon denominatorin
numerical work, it is usually convenient to pick the smallest possible number for
this denominator (the so-calléolwest common denominaforin this example, the
lowest common denominator is 16; we can multiply both top and bottom of the
fraction;f’1 by 4 to obtain the equivalent fractic%%, so the calculation becomes

8,7 _12 7 _19
4 16 16 16 16

A top heavy fraction sucf%—g (i.e. one in which the numerator is larger than the
denominator) is sometimes referred to asraproper fraction We could also write

the final answer as%. This notation is called enixed numbe(i.e. a combination

of a whole number and a simple fraction). However for most purposes in this course
it is better to leave things as improper fractions.
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If the lowest common denominator is not easy to spot, it is perfectly acceptable to
useany common denominator when adding and subtracting fractions. It may be
most convenient to multiply the top and bottom of the first fraction by the denom-

inator of the second fraction, and the top and bottom of the second fraction by the
denominator of the first. A return to our example may make this clearer:

3 7 3><16 7x4 48 28 76
4 16 4><16 16x4 64 64 64

However,64 is not the simplest form in which this fraction can be expressed. We can
divide both the numerator and the denominator by four to ob}%.ereassurlngly,
this is the same answer as we obtained before!

This process of dividing the top and bottom of a fraction by the same quantity is
often referred to asancellationbecause it is commonly shown by striking through
the numbers being divided. For examp%,can be simplified by dividing the nu-
merator and denominator by 3, and this may be shown as

51
153

Back <« >
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Worked example 1.2

fraction.

Answer
Choosing 2« 32 as the common denominator,

3 1 3x32 1x2

2v32"2x32 " 322
96 2

~ 64" 64
_ 98
64
%49
_/6432

This cannot be simplified any further, so

3. 1_49
2 32 32

Evaluate% + 3% giving the answer in the form of the simplest possible improg

Note that the instruction t@valuate’simply means ‘calculate the value of’.

er

Back |
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Question 1.4

Without using a calculatqrevaluate the following, leaving your answers in the
form of the simplest possible fractions.

(@) % - Els Answer

(b) % + % - é Answer
5 1

() 28 3 Answer

1.2.3 Manipulating fractions

It is very important to remember that multiplying both numerator and denominator
by the same non-zero number, or dividing both numerator and denominator by the
same non-zero number, are tbely things you can do to a fraction that leave its
value unchanged. Adding the same number to the numerator and denominator will
alter the value of the fraction, as will any other operations. The following question
will help you to convince yourself of this, so it is particularly important that you
should work through it at this point.

Back < >
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Question 1.5

Take any fraction, sa)f%, and evaluate it as a decimal, using your calculator
if necessary. Now try each of the following operations in turn, using your
calculator to work out the result:

(a) choose any integer and add it to the numerator and Answer
denominator

(b) subtract the same integer from the numerator and denominatdnswer

(c) square the numerator and the denominator (i.e. multiply the Answer
numerator by itself, and the denominator by itself)

(d) take the square root of the numerator and the square root of Answer
the denominator.

The results you obtained for Question 1.5 confirm that, for example, adding the
same non-zero number to the top and bottom of a fraction changes its value, as

do operations such as taking the square root of the numerator and denominator.

The experience of all calculations of this type can be generalized by saying that
excluding operations involving the integer zero,

A fraction is unchanged by either the multiplication, or the division, of |ts
numerator and denominator by the same amount. All other operations carried
out on the fraction will alter its value.

Back <« >
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In terms of numerical fractions, this rule may seem fairly obvious. But forgetting
it once the numbers are replaced by symbols is the root cause of many errors in
algebra!
1.2.4 Multiplying fractions
The expression ‘three times two’ just means there are three lots of two{i2: 2).
So multiplying by a whole number is just a form of repeated addition. For example,
3xX2=2+2+2
This is equally true if you are multiplying a fraction by a whole number:
3% 4 4 4 4 12
5555 5
We could write the 3 in the form of its equivalent fracti%rand it is then clear that
the same answer is obtained by multiplying the two numerators together and the two
denominators together.
3 4 3x4 12
1 5 1x5 5
In fact, this procedure holds good for any two fractions.
Back | > 32
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To multiply two or more fractions, multiply the numerators (top lines) together
and also multiply the denominators (bottom lines) together.

So

3 7_3x7_21

478 4x8 32
Multiplying three fractions together is done by simple extension of the method used
in the previous examples:

lxzxz_a_ Tx7x3 147
1684 16x8x4 512
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1.2.5 Dividing fractions

How are we to interpret 4 %? The analogy with dividing by an integer may help.
The expression 4 2 asks us to work out how may twos there are in 4 (answer 2).
In exactly the same way, the expression é asks how many halves there are in 4.
Figure 1.5 illustrates this in terms of circles. Each circle contains two half-circles,
and 4 circles therefore contain 8 half-circles. So

1
4:>=4x2=8
> X

D (
D C

Figure 1.5: Each circle contains two half-circles.
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Figure 1.6: Each half-circle contains two quarter-circles.

Similarly, % + %1 asks how many quarters there are in a half. Figure 1.6 illustrates
that:

e each whole circle contains 4 quarter-circles

e each half-circle contain$ x 4 quarter-circles

So
};}_}X4_}Xﬂ-_£_ﬂ-—
24 2 271 2x1 2

This may be extended into a general rule

To divide by a fraction, turn it upside down and multiply.
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So
4.5_4.9
3°'9 375

,3612
- 155
_12
5

Here the cancellation has been done by dividing the numerator and the denominator
of the final answer by 3. However, cancellation could equally well have been carried
out at an earlier stage,

4 93 12
— X — = —
31 5 5

Note that divisions involving fractions are commonly written in sever&edint

. 45 4/3
ways; the example above might equally well have been express§ éax;)r 5/9°
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Itis always important to remember that an integer is equivalent to a fraction in which
the numerator is equal to that integer and the denominator is equal to 1: for example,
the integer 3 is equivalent to the fracti%nSo dividing by the integer 3 is equivalent
to dividing by the fraction%, and that, according to the general rule about how to
divide by a fraction, is the same as multiplying by the fract%an

1 1 3 1 1 1x1 1
s 3= 5+173%32x37 6
In this context, it may be helpful to restate the general rule in terms of a
specific example:

I want the
cake divided

Multiplying by % is equivalent to dividing by 2.
Dividing by% IS equivalent to multiplying by 2.

The blue box and the cartoon use the integer 2 as the example, but i
could of course be replaced by any other integer: it is equally true to
say that dividing byllO is equivalent to multiplying by 10.
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Question 1.6
Work out each of the following, leaving your answer as the simplest possible
fraction:
2
(a) 7 X 3 Answer
5
(b) g7 Answer
1/6
c) — Answer
©) 7 73
(d) i—i X Ezi X % Answer

1.3 Powers, reciprocals and roots

1.3.1 Powers

Most people are familiar with the fact that22 can also be written as’Zsaid as
‘two squared’) and X 2 x 2 as 2 (said as ‘two cubed’). This shorthand notation
can be extended indefinitely, Sx2 x 2 x 2 x 2 x 2 becomes 2(said as ‘two raised
to the power of six’ or ‘two to the power of six’, or more usually just as ‘two to the
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six’). In these examples, 2 is called thase numbeand the superscript indicates

the number of ‘2’s that have been multiplied together. The superscript number is
variously called thexponenttheindex(plural indices) or thgpower In the rest of

this section, the term exponent will be the one used, because that ties in most closely
with the notation on calculators.

‘Power’ is a slightly confusing term because it is commonly used to denote two
different quantities:

¢ the value of the superscript number (as in ‘two to the power of six’),
¢ the complete package of base number and exponent .
The context should make it clear what is meant in any particular example.

In the following example, the base number is 5:

Exponent 1 2 3 4
Power of 5 5 5 5 5
Value 5 25 125 625

If you read this table starting at the right and stepping to the left, each time you take
a step you are subtracting 1 from the number in the top row and dividing the number
in the bottom row by five. On the basis of this pattern, mathematicians extend this
table further to the left by continuing to apply the same ‘rule’ for each step, giving:
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Exponent -3 -2 -1 0 1 2 3 4
Power of 5 53 52 51 50 5 5 5 5
1 1 1
Value 5 3% 5 1 5 25 125 625
Firstly, note the extremely important result that51.
Any base number raised to the power of zero is equal to 1.
. : . 1
Next, notice that 5° = % But since 25= 5 2i5 is alsog. So we have developed
a new form of shorthand such that
1 1 1
51=2 52== 53=— and so on.
5 52 53
Another way of saying this is that3is thereciprocalof 52. The reciprocal of any
number is 1 divided by that number. Note that this also works the other way round:
. . 1
52 js the reciprocal of 5. In other words 5 = =
The system shown above for powers of 5 could be applied to any base number,
and is especially useful when applied to powers of ten, because then it ties in with
our normal system for writing decimal numbers. In the example below, the table is
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constructed the other way round to emphasise this:

thousands hundreds tens units point tenths hundredths thousandths

Value 1000 100 10 1 . 0.1 0.01 0.001
Power of 10 18 102 10t 1P 101 1072 1073
Exponent 3 2 1 O -1 -2 -3

In the next chapter, you will see how useful tipgwers of ten notatiocan be in
scientific work.
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Question 1.7

Without using a calculatqrevaluate

(a) 272 Answer
1

(b) 33 Answer
1 A

(© 2 nswer

(d) = Answer
10*

Your calculator probably has axt button, and either ax* or a 1/x button, but
to evaluate other powers you will have to use a special ‘powers’ button. On some

calculators this is marke®, on others it has the symbal. To input a negative
exponent, you may have to combine the powers button with-fhebutton. Make
sure at this point that you can operate your own calculator to obtain correctly:

5% = 625

51=0.2(.e. 15)

572 =0.04 (i.e. J25)

Back < >



Contents O
Question 1.8
Use your calculator to evaluate:
(a) 2° Answer
(b) 373 Answer
1
(© 7 Answer

Box 1.2 An intimate knowledge of powers!

Srinivasa Ramanujan (1887-1920), an Indian mathematician of immense
ent, came to England in 1913 at the invitation of the distinguished British m
ematician, G. H. Hardy. In his biography of Ramanujan, Hardy wrote:

> tal-
ath-

| remember once going to see him when he was lying ill at Putney. | had ridden

in taxi cab number 1729 and remarked that the number seemed to me rat
dull one, and that | hoped it was not an unfavorable omen. “No,” he replie
“it is a very interesting number; it is the smallest number expressible as
sum of two cubes in two fitrent ways.

Indeed: 1729 13 + 128 = 93 + 10°

ner a
d,
the
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1.3.2 Multiplying and dividing with powers

In scientific calculations, it is very common to have to multiply and divide by pow-
ers, especially powers of ten. It is therefore extremely important to become confi-
dent in manipulating powers in this way, both with and without a calculator. How-
ever, the rules for doing so are quite easy to work out.

Suppose we wanted to multiply 408y 10%. We could write this out more fully as

10% x 107 = (10x 10x 10)x (10x 10) = 10°
The exponent of the result (5) is the same as the sum of the two original exponents
(3+2).

The process is of course not limited to powers of ten. It works for any base number.
For example:

x2=2x2)x(2x2x2x2)=2°

Again, the exponent of the result (6) is the same as the sum of the two original
exponents (2 4).

The process also works for negative exponents. For example, Si%ceS%

1
53x5—2:(5x5x5)xm:5:51
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Adding the exponents here again gives the exponent of the answer:
3+(-2)=1
In science and maths, general rules are often stated in terms of symbols. We could

express the rule we have discovered through the above examples in the much more
general form

N2 x NP = N&+P (1.1)

whereN represents any base number arghdb represent any exponents

Quantities such as those represented by the syny@sindb, which can take any
value we choose, are callgdriables

The example involving a negative exponent we looked at previously shows immedi-
ately how to extend the rules to cover situations in which we want to divide powers.
We had:

53 X 5—2 — 53+(—2) — 51 — 5

But as you will remember frorBection 1.2.5multiplying by a fraction is the same
as dividing by that fraction turned upside down (i.e. its reciprocal). So multiplying
by 572 is the same as dividing by its reciprocaf)5and we can write

5-.52=-5%2_5l_5
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This time, instead of adding the exponents, we have subtracted the second from the
first. More generally,

N2 = NP = NP (1.2)

whereN represents any base number arghdb represent any exponents

Question 1.9

Without using a calculatgrsimplify the following to the greatest possible ex
tent (leaving your answer expressed as a power).

(a) 2%9x 22 Answer
(b) 3%°x 3° Answer
(c) 10%/10° Answer
(d) 10?/10°3 Answer
(e) 1074 =+ 1¢? Answer
)] 105;—03w2 Answer
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1.3.3 Powers of powers

Consider now what happens when a number which is already raised to a power, for
example 3, is again raised to a power. Suppose for examplis &self cubed, so

that we have(32)3. Writing this out in full shows that

()’ = @) x @) x () = Bx)xBx ) x (3x3) = 3

This time the exponents have been multiplied together to obtain the exponent of the
answer: 3 2 = 6.

More generally,

(NP = NMxN (1.3)

whereN represents any base number amendn represent any exponents

Equation 1.3 applies for all values bf, m andn whether positive or negative. So
for example:

1 3_ 1 203_10(—20)><3_1—60_ 1
o) =107 = =100 =
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This is equivalent to saying that
1Y 0 1 1
10%0) (1020 10203 1060

Question 1.10

Without using a calculatqrsimplify the following to the greatest possible ex-

tent, leaving your answer expressed as a power.

() (4* ) Answer

(b) (5° ) Answer

(c) (1025) Answer

1\8

(d) (?) Answer

Back | > 48



Contents

1.3.4 Roots and fractional exponents

Finally, how are we to interpret a power with a fractional exponent, suct/a2 2
The rule for multiplying powers gives a clue. Suppose we were to multiBR/tsy
itself. Applying Equation 1.Isuggests that:

But the positive number that multiplied by itself gives 2 is more commonly written
as V2. The two shorthandsZ and V2 are often used interchangeably.

Similarly, the number that multiplied by itself three times gives 125 is sometimes

written as V125 (said as ‘the cube root of 125), but more commonly written in
science as (12%y. This number is clearly 5, and you should notice the correspon-
dence:

5% = 125 and conversely (125§ = 5

More generally,

The positiventh root of a numbeN can be written as eithe¥/N or asN/"

In practice, the first type of notation is only used whmea 2 orn = 3.
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Worked example 1.3

(21/2)7
Without using a calculator, evalu

Answer
FromEquation 1.3

(2¥2) =257 =272 and (28)"% = 23 = 2302
o)

172\’

(22) 22

(23)1/2 T 232
FromEquation 1.2

27/2

c _ol/2 _93/2
R =2 =2
_ 2412
=22
=4
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Equation 1.3an now be used to bring meaning to a number liké27

SinceZ = £ x 2, applyingEquation 1.3hows that 2%3 = (274/3)2 j.e. the square
of the cube root of 27. The cube root of 27 is 3, sé/2¥ equal to 3 or 9.

Question 1.11

Without using a calculatgrsimplify the following to the greatest possible ex
tent, expressing your answer as an integer or a decimal.

(a) (24)1/2 Answer
(b) V10t Answer
(c) 100%2 Answer
(d) (125y1/3 Answer
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1.4 Doing calculations in the right order

In Section 1.1.2 brackets were used to make it clear that the minus signs were
tied to particular numbers. Brackets can also be used to show the order in which
calculations are to be performed.

If a calculation were written as
3+2x5=

should one do the addition first or the multiplication first? Try entering this expres-
sion into your calculatoexactly as it is written Do you get the answer 13? If so,
your calculator knows the convention adopted by mathematicians everywhere that
multiplication takes precedence over addition. The calculator has ‘remembered’ the
3 until it has worked out the result of multiplying 2 by 5 and has then added the 3 to
the 10. According to the rules all mathematicians follow, if you wanted to add the 3
and the 2 first and then multiply that result by 5 you would have to write

(B3+2)x5=25

Again, check that you can use the bracket function on your calculator to enter this
expression exactly as written on the left-hand side of this equation and that you
obtain the correct answer.

There are similar rules that govern the order of precedence of other arithmetic oper-
ations, which are neatly encapsulated in the mnemonic BEDMAS.
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Order of arithmetic operations

Brackets take precedence over
Exponents. Then...

Division and

M ultiplication must be done before. ..
Addition and

Subtraction.

So if we write—3 — 12 + 6, the BEDMAS rules tell us we must do the division
(12 + 6 = 2) before carrying out the subtractiony — 2 = -5). Try this on your
calculator too; you may have to use thg- button to input the-3.

Many people, including scientists, find it hard to visualize the rules in a string of
numbers. They often opt to use brackets to make things clear, even when those
brackets simply reinforce the BEDMAS rules. So one could choose to write

(12+3)+2=6

There is nothing wrong with adding such ‘redundant’ brackets — they are simply

there for clarity and can even be entered into your calculator (try it). Far better to

have a few additional brackets than to be confused about the order in which the
calculation must be carried out!
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There is one final quirk associated with the use of brackets. In mathematics, the
multiplication sign is often left out (though its presence is implied) between numbers
and brackets, and between brackets and brackets. So

2B3+1)=2%x(3+1)=8

and

(1+1)(4+3)=2x7=14
Some calculators ‘understand’ this convention and some do not. Check your own

calculator carefully using the two examples above.

The next operation in precedence after brackets involves exponents. If there are
powers in the expression you are evaluating, deal with any brackets first, then work
out the powers before carrying out any other arithmetical operations.
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Question

Evaluate 2 32 and (2x 3)?

Answer

In the first case, there are no brackets so the exponent takes precedence:
2x3?=2x9=18

In the second case, the bracket takes precedence:
(2x3)°=6°=236
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Question 1.12
Evaluate (preferably without using your calculator):
(@) 35-5x2 Answer
(b) (35-5)x2 Answer
(c) 5(2-3) Answer
(d) 3x 22 Answer
(e) 2°+3 Answer
M (2+6)(1+2) Answer
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1.5 Learning outcomes for Chapter 1

After completing your work on this chapter you should be able to:

1.1 carry out addition, subtraction, multiplication and division operations
involving negative numbers;

1.2 add two or more fractions;

1.3 subtract one fraction from another;

1.4 multiply a fraction by an integer or by another fraction;

1.5 divide a fraction by a non-zero integer or by another fraction;

1.6 evaluate powers involving any base and positive, negative or fractional
exponents;

1.7 multiply or divide two powers involving the same base;

1.8 evaluate any given power of a number already raised to a power.
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Measurement in Science

Observation, measurement and the recording of data are central activities in science.
Speculation and the development of new theories are crucial as well, but ultimately
the predictions resulting from those theories have to be tested against what actu-
ally happens and this can only be done by making further measurements. Whether
measurements are made using simple instruments such as rulers and thermometers,
or involve sophisticated devices such as electron microscopes or lasers, there are
decisions to be made about how the results are to be represented, what units of mea-
surements will be used and the precision to which the measurements will be made.
In this chapter we will consider these points in turn. Then in Chapter 3 we will go
on to think about how measurements dffelient quantities may be combined, and
what significance should be attached to the results.
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2.1 Large quantities and small quantities

Scientists frequently deal with enormous quantities — and with tiny ones. For ex-
ample it is estimated that the Earth came into being about four and a half thousand
million years ago. It took another six hundred million years for the first living things
— bacteria — to appear. Bacteria are so small that they bear roughly the same pro-
portion to the size of a pinhead as the size that pinhead bears to the height of a
four-year old child!

In the previous chapter, we saw how convenient powers of ten could be as a way of
writing down very large or very small numbers. For example,

10° = 1000 000 (a million) and I = 1/1000= 0.001 (a thousandth)
This shorthand can be extended to any quantity, simply by multiplying the power of
ten by a small number. For instance,

2 x 10° = 2 x 1000 000= 2 000 000 (two million)

(The quantity on the left-hand side would be said as ‘two times ten to the six’.)
Similarly,

3.5 x 10° = 3500000 (three and a half million)
7% 1073 = 7/1000= 0.007 (seven-thousandths)

Back <« >

59



Contents

Scientists make so much use of this particular shorthand that it has come to be
known asscientific notation(although in maths texts you may also find it referred
to asstandard index fornor standard forn)

A quantity is said to be expressed in scientific notation if its value is written as
a number multiplied by a power of ten. The number can be a single digit pr a
decimal number, but must be greater than or equal to 1 and less than 10.

Note the restriction: 75 107 is not in scientific notation and nor isT x 10%,
though these are both equivalent t6 Z 10° whichis in scientific notation.

Scientific notation can be defined more succinctly by making use of some of the
mathematical symbols denoting the relative sizes of quantities. These symbols are:

>  greater than (e.g. 3 2);

> greater than or equal to (e.@ > 4 means that the quantigymay take the
exact value 4 or any value larger than 4);

< lessthan;
< lessthan or equal to.

Note that a > 4’ and ‘4 < a’ convey exactly the same information about the quantity
a

Using these symbols, scientific notation may be defined as a notation in which the
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value of a quantity is written in the foramx 10", wherenis an integer and ¥ a <
10.

To move from scientific notation to integers or to decimal notation, first deal with
the power of ten, then carry out the multiplication or division.

Worked example 2.1

Express the following numbers as integers or in decimal notation:
(a) 453x 10°

(b) 8.371x 107

(c) 6.4x 1072

Answer

(a) 4.53x 10° = 4.53x 1000= 4530

(b) 8.371x 10% = 8.371x 100= 8371

1 6.4
6.4%x103=64x — = —— = 0.0064
&) B * 1000~ 1000

Note that, as in Worked example 2.1, a requirement to express a quantity in a dif-
ferent form simply involves taking the quantity and writing down its equivalent in
the new form. You may do this in one step, or write down intermediate steps as was
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done in the worked example.

Question 2.1

Without using your calculateexpress the following numbers as integers or|in
decimal notation. Note that (a) and (b) are in scientific notation, while (c) is
not.

(a) 5.4x 10 Answer
(b) 2.1x 1072 Answer
c) 0.6x 1071 Answer
(c)

Moving from an integer or decimal notation to scientific notation is equivalent to
deciding what power of ten you need to multiply or divide by in order to convert the
number you are starting with to a number that lies between 1 and 10.

Back < > 62



Contents [l
Worked example 2.2
Express the following numbers in scientific notation:
(a) 356 000
(b) 49.7 x 10
(c) 0.831
Answer
(a) 356 000= 3.56x 100 000= 3.56 x 10°
(b) 497 x 10* = 497x 10x 10* = 4.97x 101+% = 497 x 10°
31
(c) 0.831= 831 _ 8.31x 101
10
In this worked example, all the steps have been written out in full. You may be able
to manage with fewer steps in your own calculations — just use as many or as few
as you feel comfortable with in order to get the right answer!
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Question 2.2

Without using your calculaterexpress the following numbers in scientific ng
tation:

(a) 215 Answer
(b) 46.7 Answer
(c) 152x 10° Answer
(d) 0.0000876 Answer

It is only too easy to lose track of the sizes of things when using scientific notation,
so you should make a habit of thinking carefully about what the numbers mean,
bearing in mind that numbers may be positive or negative. For example:

—1x 10'is a very large negative number;
—1x 1071%s a very small negative number;
1x 1071%s a very small positive number.

Figure 2.1places on the number line some numbers in scientific notation. You may
find this helps you to visualize things.
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We started this section thinking about the early Earth and the first appearance of life.
Using scientific notation, the age of the Earth can be neatly expressead@

years and the size of one type of those early bacterig?2as1D % metres. Of course

the value we come up with for such sizes will depend on the units in which we
choose to make the measurements. If we were measuring the diameter of the Moon,
we could elect to express it in metres or in kilometres, or even in miles.

2.2 Units of measurement

In the UK, two systems of units are in common use. We still use old imperial mea-
sures for some things: milk is sold in pints and signposts indicate distances in miles.
But for many other everyday measurements metric units have been adopted: we buy
petrol in litres and sugar in kilogram bags. A great advantage of metric units is that
we no longer have to convert laboriously from imperial units, such as gallons, feet
and inches, in order to trade with continental Europe. Also, calculations are easier
in a metric (i.e. decimal) system! Similar advantages were the main consideration
when in 1960 an international conference formally approved a standard set of sci-
entific units, thus replacing at a stroke the marnfjedent systems of measurement
that had been used up until then by scientists fiedent nationalities. This ‘univer-

sal’ system for scientific measurement is referred t&lasnits (short for Systeme
International d’Unités).
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In SI, there are seven ‘base units’, which are listed in Box 2.1. Surprising as it
may initially seem, every unit for every other kind of quantity (speed, acceleration,
pressure, energy, voltage, heat, magnetic field, properties of radioactive materials,
indeed whatever you care to name) can be made up from combinations of just these
seven base units. For instance, speed is measured in metres per second. You will
find some other combinations of base units described in Chapter 3. In this course we
shall work mainly with the familiar base units of length, mass, time and temperature,
and some of their combinations, but it is worth knowing that the other base units
exist as you may meet them in other courses.
Box 2.1 The Sl base units
Physical quantity Name of unit Symbol for unit
length metre m
time second S
mass kilogram kg
temperature kelvin K
amount of substance mole mol
electric current ampere A
luminous intensity candela cd
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Most of these base units relate to physical descriptions that apply universally.
The Sl base unit of time, the second, is defined as the period over which
the waves emitted by caesium atoms under specific conditions cycle exactly
9192631770 times. Then the Sl base unit of length, the metre, is defined by
stating that the speed of light in a vacuum, which is a constant throughout the
Universe, is exactly 299 792 458 metres per second.

The SI base unit of mass, the kilogram, is the only fundamental unit that is
defined in terms of a specific object. The metal cylinder which constitutes|the
world’s ‘standard kilogram’ is kept in France. Note that the kilogram is actually

the standard unit afass not of weight In scientific language, the weight o
an object is the downward pull on that object due to gravity, whereas its mass
is determined by the amount of matter in it. When astronauts go to the Moon,
where the pull of gravity is only about one-sixth of that on Earth, their mass

remains the same but their weight drops dramatically! And in zero gravity, they
experience a condition known as ‘weightlessness’.

The Sl base unit of temperature is the kelvin, which is related to the everyday
unit of temperature, the degree Celsius:

(temperature in kelvin¥ (temperature in degrees Celsius27315

(You will find some of the rationale for the kelvin scale of temperature in Chap-
ter 5.)
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The amount of a pure substance is expressed in the S| base unit of the mole.
Whatever the smallest particle of a given substance is, one mole of that|sub-
stance will contain £221136% 10?2 (known as Avogadro’s number) of thos
particles. A mole of graphite contains Avogadro’s number of carbon atoms.
Carbon dioxide is made up of molecules in which one carbon atom is joined to
two oxygen atoms, and a mole of carbon dioxide contains Avogadro’s number
of these molecules.

You will have noticed that while the base unit of length is the metre, not the kilome-
tre, the base unit of mass is the kilogram, not the gram.

It is important to realize that, although in everyday usage it is common to say that
you ‘weigh so many kilos’, there are two things wrong with this usage from the
scientific point of view. First, as noted Box 2.1, the kilogram is not a unit of
weight, but a unit of mass. (The Sl unit of weight, the newton, will be discussed in
Chapter 3.) Secondly, in scientific language, ‘kilo’ is never used as an abbreviation
for kilogram, in the sense of the everyday phrase ‘he weighs so many kilos’. In
science, kilo is always used aspeefix denoting a thousand: one kilometre is a
thousand metres, one kilogram is a thousand grams.

Another prefix with which everybody is familiar is ‘milli’, denoting a thousandth.
One millimetre, as marked on ordinary rulers, is one-thousandth of a metre; or put
the other way round, a thousand millimetres make up a metre. There are many other
prefixes in use with Sl units, all of which may be applied to any quantity. Like kilo
and milli, the standard prefixes are based on multiples of 1000 (i®. The most
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commonly used prefixes are listed in Box 2.2.

Itis important to write the symbols for units and their prefixes in the correct case. So
k (lower case) is the symbol for the prefix ‘kilo’ whilst K (upper case) is the symbol
for the Kelvin; m (lower case) is the symbol for the metre or the prefix ‘milli’ whilst

M (upper case) is the symbol for the prefix ‘mega’.

Box 2.2 Prefixes used with Sl units
prefix symbol multiplying factor
tera T 132 = 1000 000 000 000
giga G 1@ = 1000 000 000
mega M 16 = 1000000
kilo k 10° = 1000
- - 10 =1
milli m 10~2 = 0.001
micro u* 106 = 0.000001
nano n 10° = 0.000 000 001
pico p 1012 = 0.000 000 000 001
femto f 101> = 0.000 000 000 000 001
* The Greek letter is pronounced ‘mew’.
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The following data may help to illustrate the size implications of some of the
prefixes:

¢ the distance between Pluto (the furthest planet in the Solar System) and
the Sun is about 6 Tm,

e acentury is about 3 Gs,

e eleven and a half days contain about 1 Ms,

¢ the length of a typical virus is about 10 nm,

¢ the mass of a typical bacterial cell is about 1 pg.

Astronomers have long been making measurements involving very large quan-
tities, but scientists are increasingly probing very small quantities. ‘Femto-
chemistry’ is a rapidly developing area, which involves the use of advanced
laser techniques to investigate the act of chemical transformation as molecules
collide with one another, chemical bonds are broken and new ones are formed.
In this work, measurements have to be made on the femtosecond timescale.
Ahmed H. Zewalil (whose laboratory at the California Institute of Technolagy

in Pasadena is often referred to as ‘femtoland’) received the 1999 Nobel Prize
in Chemistry for his development of this new area.

Although scientific notation, Sl units and the prefixe8wx 2.2are universal short-
hand for all scientists, there are a few instances in which other conventions and units
are adopted by particular groups of scientists for reasons of convenience. For ex-
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ample, we have seen that the age of the Earth is ah6ut 40° years. One way

to write this would be 4.6 ‘giga years’ but geologists find millions of years a much
more convenient standard measure. They even have a special symbol for a million
years: Ma (where the ‘a’ stands for ‘annum’, the Latin word for year). So in Earth
science texts you will commonly find the age of the Earth written as 4600 Ma. It
won't have escaped your notice that the year is not the Sl base unit of time — but
then perhaps it would be a little odd to think about geological timescales in terms of
seconds!

A few metric units from the pre-Sl era also remain in use. In chemistry courses,
you may come across the &ngstrém (symbol A), equal t3%Metres. This was
commonly used for the measurement of distances between atoms in chemical struc-
tures, although these distances are now often expressed in either nanometres or pi-
cometres. Other metric but non-Sl units with which we are all familiar are the litre
(symbol I) and thelegree Celsiugésymbol°C).

There are also some prefixes in common use, which don’t appBaixi@.2because

they don’t conform to the ‘multiples of 1000’ rule, but that when applied to particu-
lar units happen to produce a very convenient measure. One you will certainly have
used yourself i€enti (hundredth): rulers show centimetres (hundredths of a metre)
as well as millimetres, and standard wine bottles are marked as holding 75 cl. One
less commonly seen weci (tenth), but that is routinely used by chemists in mea-
suring concentrations of chemicals dissolved in water, or other solvents, as you will
see in Chapter 3. In the next section you will also come across the decibel, which is
used to measure the loudness of sounds.
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Worked example 2.3

picometres?
Answer

1 pm=1012mso

1m= pm = 10*2 pm

1012

1nm=10°mso

1 nm=10"°x 10" pm
— 10—9+12 pm
= 10° pm

0.154 nm= 0.154% 10° pm
=154 pm

Diamond is a crystalline form of carbon in which the distance between a
cent carbon atoms is 0.154 nm. What is this interatomic distance express

dja-
ed in
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Question 2.3
Using scientific notation, express:

(a) 3476 km (the radius of the Moon) in metres.

in nm,
(c) 0.8 s (atypical time between human heartbeats) in ms.

Answer

(b) 8.0 um (the diameter of a capillary carrying blood in the body)Answer

Answer
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2.3 Scales of measurement

In thinking about the sizes of things, it is sometimes useful to do so in quite rough
terms, just to the nearest power of ten. For example, 200 is nearer to 100 than it is
to 1000, but 850 is nearer to 1000 than it is to 100. So if we were approximating
to the nearest power of ten we could say 200 was roughlydit 850 was roughly

103. This process is called reducing the numbers to the neamdst of magnitude

The approximate value of a quantity expressed as the nearest power of fen to
that value is called the order of magnitude of the quantity.

The easiest way to work out the order of magnitude of a quantity is to express it
first in scientific notation in the form x 10". Then ifais less than 5, the order of
magnitude is 10 But if ais equal to or greater than 5, the power of ten is rounded
up by one, so the order of magnitude i$"10 For example, the diameter of Mars is
6762 km. This can be written asf2x 10° km, and because 6.762 is greater than
5, the diameter of Mars is said to be ‘of order1an’.

This is normally written as:
diameter of Mars- 10* km

where the symbot denotes ‘is of order’.
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Question
What is the order of magnitude of the mass of the Earthx6L.0?* kg?
Answer

Mass of the Earth- 10%° kg (since 6.0 is greater than 5, the power of ten has
been rounded up).

Question
What is the order of magnitude of the mass of Jupitéx110? kg?
Answer

Mass of Jupite~ 10?7 kg (since 1.9 is less than 5, the power of ten remains
unchanged).
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Question

particles, 07 x 10710 s?

Answer

Particle lifetime= 0.7 x 10 1°s

What is the order of magnitude of the average lifetime of unstable ‘sigma plus

=7x10s
Since 7 is greater than 5,
~ 10+ 5 the power of ten must be
rounded up
~1010g
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The phrase ‘order of magnitude’ is also quite commonly used to compare the sizes
of things, e.g. a millimetre is three orders of magnitude smaller than a metre.

Worked example 2.4

To the nearest order of magnitude, how many times more massive is Jupiter
than the Earth?

Answer
We had:

mass of Jupiter~ 10?7 kg
and

mass of Earth~ 10%° kg

SO
mass of Jupiter 1077 1027-25) _ 12
mass of Earth 1025

Jupiter is two orders of magnitude (i.e. roughly 100 times) more massive than
the Earth.
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Question 2.4
What is the order of magnitude of the following measurements?

() The distance between Pluto (the furthest planet in the Solaknswer
System) and the Sun: five thousand nine hundred million kilo-
metres.

(b) The diameter of the Sun, given that its radius.B76< 10’ m. Answer
(c) 2m. Answer

(d) The mass of a carbon dioxide molecule3Tx 10726 kg. Answer

Sophisticated instrumentation now allows scientists to measure across 40 orders of
magnitude, as shown iRigure 2.2 If you turn back toFigure 1.2 you will see

that the scale there is quitefiirent to that in Figure 2.2. On the thermometer,
the interval between marked points was always the same, with marked points at
-0.1,0,0.1,0.2, etc. In other words, each step from one division to the next on the
scale represented tfaldition or subtractionof a fixed amount (0.1 in that case).
This kind of scale is callelihear. In Figure 2.2 on the other hand, each step involves
multiplication or divisionby a fixed power of ten (1in this particular case). As a
result, the intervals between divisions are affefient. This kind of scale is called
logarithmic The next question allows you to investigate some of the properties of
this type of scale.
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Question 2.5
Use information fronfigure 2.2to answer the following questions.
(a) What is the diference in value between: Answer
(i) the tick marks at 16 m and 18 m;
(ii) the tick marks at 1dm and 16 m, and
(iii) the tick marks at 19m and 16 m?
(b) Calculate to the nearest order of magnitude, how many time&Snswer
taller than a child is Mount Everest.
(c) Calculate to the nearest order of magnitude, how many typicainswer
viruses laid end to end would cover the thickness of a piece of
paper. Hint: you may find it helpful to look back at/orked
example 2.9
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2.3.1 Logarithmic scales in practice

In Figure 2.2 a logarithmic scale was used for the purposes of display, and the
power of ten for the multiplying factor () was chosen because it was the one that
best fitted the page. In drawing diagrams and graphs we are always free to choose
the scale divisions. However, logarithmic scales are used in a number of fields to
measure quantities that can vary over a very wide range. In such cases, an increase
or decrease of one ‘unit’ always represents a ten-fold increase or decrease in the
quantity measured. The following sections give two examples.

Sound waves

Thedecibel(symbol dB) is the unit used to measure the relative loudness of sounds.
The ‘intensity’ of a sound is related to the square of the variation in pressure as
the sound wave passes through the air, and the range of intensities that people can
detect is enormous. The sound that just causes pairtfdififes more intense than

the sound that is just audible! To deal with this huge range, a logarithmic scale for
loudness was devised, according to which every 10 dB (or ‘1 B’) increase in sound
level is equivalent to a 10-fold increase in intensity. The decibel is also a convenient
measure because a sound level of 1 dB is just within the limit of human hearing, and
a change of 1 dB is about the smalledtelience in sound that the ear can detect.
(SeeFigure 2.3)
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Earthquakes

The Richter scaledescribes the magnitude of earthquakes. An instrument called

a seismometer is used to measure the maximum ground movement caused by the
earthquake, and a correction factor is applied to this reading to allow for the distance
of the seismometer from the site of the earthquake. Seismometers are very sensi-
tive and can detect minute amounts of ground movement (they have to be shielded
from the dfects caused just by people walking near them), but some earthquakes
can produce ground movements millions of times greater than the minimum de-
tectable limit. To cope with this huge variation, the Richter scale is logarithmic: an
increase of one unit on the scale implies a ten-fold increase in the maximum ground
movement. A magnitude 2 earthquake can just be felt as a tremor. A magnitude 3
earthquake produces 10 times more ground motion than a magnitude 2 earthquake.
Damage to buildings occurs at magnitudes in excess of 6. The three largest earth-
guakes ever recorded (in Portugal in 1775, in Columbia in 1905 and in Japan in
1933) each had a Richter magnitudes of 8.9.
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Worked example 2.5

A whisper corresponds to a sound level of about 20 dB, and a shout to a |evel
of about 80 dB. How much greater is the intensity of a shout compared to that
of a whisper?

Answer

The increase in sound level is
80dB-20dB=60dB

This may be expressed as (10 B0 dB+ 10 dB+ 10 dB+ 10 dB+ 10 dB),
andeach10 dB increase corresponds to multiplying the intensity by 10.

So the intensity of a shout is (2010x 10x 10x 10x 10) = 10° times greater
than a whisper!

Question 2.6 Answer

How much more ground movement is there in an earthquake measuring|7 on
the Richter scale compared to one measuring 3?

The basis of logarithmic scales will be discussed in Chapter 7.
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2.4 How precise are the measurements?

Scientists are always trying to get better and more reliable data. One way of getting
a more precise measurement might be to switch to an instrument with a more finely
divided scale. Figure 2.4 shows parts of two thermometers placed side by side to
record the air temperature in a room.

9 20 21 22 23 24 25 26 27°C/§
[ )

(17 18 19 20 21 22 23 24 25°C§

Figure 2.4: Parts of two thermometers A and B, measuring the air temperature in
the same place.

The scale on thermometer A is quite coarse. The marked divisions represent integer
numbers of degrees. On this scale we can see that the temperature is betw€en 21
and 22°C. | might estimate it as 21 °C, but somebody else could easily record it

as 216 °C or 218 °C. So there is some uncertainty in the first decimal place, and
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certainly there is no way we could attempt to guess the temperature to two decimal
places using this particular thermometer.

Thermometer B has a finer scale, with divisions marked evar§@©. Now we can
clearly see that the temperature is betwees® 2C and 217 °C. | might read it as
21.63 °C, but a second person could plausibly read it a623C or 2165 °C. With
this scale we are sure of the first decimal place but uncertain of the second.

When quoting the result of a measurement, you should never quote more digits than
you can justify in terms of the uncertainty in the measurement. The number of
significant figuresn the value of a measured quantity is defined as the number of
digits known with certainty plus one uncertain digit. With thermometer A we could
be sure of the 21 (two digits), but were uncertain about the digit in the first decimal
place, so we can quote a reading to three significant figures, asQ@Jor 216 °C

or 218 °C). With thermometer B it was the fourth digit that was uncertain, so we
can quote our reading to four significant figures, as, for examplé42C.

Question 2.7 Answer

How many significant figures are quoted in each of the following quantities:
1221 m; 223 km; 1487 km?

Question 2.7 emphasizes that significant figures mustn’t be confused with the num-
ber of decimal places. After all, if you had measured the length of something as
13 mm, you wouldn’t want the precision of your result to be changed just because
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you converted the measurement to centimetres. Whether you write 13 méhanl

you are expressing the result of your measurement to two significant figures. Now
suppose you convert to metresOD3 m. The uncertainty in your result still hasn’t
changed, so this shows tHatding zeroes in decimal numbers do not count as sig-
nificant figures Scientific notation is helpful in this regard. Expressing the result as
1.3 x 1072 m makes it very obvious that there are two significant figures.

Another circumstance in which one has to be careful about not using unjustified
precision occurs when the results of measurements are used as the basis for calcula-
tions. Suppose we had measured the diameter of a circular pattern to two significant
figures and obtained the resulBXm. If we then needed to calculate the radius

of the circle, it might be tempting simply to divide the diameter by 2 and say ‘the
radius of the pattern is.85 cm’. But 165 cm implies that the value is known to
three significant figures! So we need to rouriitbe figure in some way, to express

the fact that the last significant digit in this particular case is the first digit after the
decimal point. The usual rule for doing this is to leave the last significant digit un-
changed if it would have been followed by a digit from 0O to 4, and to increase it by
one if it would have been followed by a digit from 5 to 9. To two significant figures
our circular pattern therefore has a radius 9f dm. The issues involved in dealing

with significant figures in more complex calculations are discussed in Chapter 3.

Scientific notation also shows up the need for care in dealing with very large num-
bers. The speed of light in a vacuum (the constamt Einstein’s equatiorE =

mc is, to six significant figures, 299 792 kilometres per second. Remembering the
rounding rule, this can quite properly be written as 30° kilometres per second
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(one significant figure), or.80 x 10° kilometres per second (three significant fig-
ures). But it would be misleading to write it as 300 000 kilometres per second,
because that could imply that all six digits are significant.

One of the advantages of using scientific notation is that it removes any ambigu-
ity about whether zeroes at tleadof a number are significant or are simply place
markers. For example, if a length is measured to just one significant figure as 8 m,
how should the equivalent value in centimetres be expressed? It would be mislead-
ing to write 800 cm, since that could imply the value is known to three significant
figures. The only way out of this fliculty is to use scientific notation: writing

8 x 107 cm makes it clear that the quantity is known only to one significant figure,
in line with the precision of the original measurement.

Question

If the speed of light through glass is quoted &&210% metres per second, how
many significant figures are being given?

Answer

Final zeroesre significant, so the speed is being given to two significant fig-
ures.
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Question

Neon gas makes up 0.0018% by volume of the air around us. How many|sig-
nificant figures are being given in this percentage?

Answer

Leading zeroes argot significant, so this value is also being given to two
significant figures.

Worked example 2.6

The average diameter of Mars is 6762 km. What is this distance in mefres,
expressed to three significant figures?

Answer

The only way to express this quantity unambiguously to fewer than the four
significant figures originally given is to use scientific notation.

6762 km= 6.762x 10° km
= 6.762x 10°x 10°m
= 6.762x 1033 m
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Thus 6762 kme 6.762x 10° m.

The final digit is a 2, so no rounding up is required and the average diamet
Mars is 676 x 10° m to three significant figures.

er of

Question 2.8
Express the following temperatures to two significant figures:

(a) —38.87 °C (the melting point of mercury, which has the un- Answer
usual property for a metal of being liquid at room temperature);

(b) —1958 °C (the boiling point of nitrogen, i.e. the temperature Answer
above which it is a gas);

(c) 10834 °C (the melting point of copper). Answer
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In the following chapter and in your future studies of science generally, you will
be doing lots of calculations with numbers in scientific notation, and will also be
expected to quote your results to appropriate numbers of significant figures. Chapter
3 will discuss the flicient way to input scientific notation into your calculator, and
how to interpret the results.

2.5 Learning outcomes for Chapter 2

After completing your work on this chapter you should be able to:

2.1 convert quantities expressed as integers or in decimal notation to scientific
notation and vice versa;

2.2 use prefixes in association with the Sl base units and convert between prefixes;
2.3 express a given quantity as an order of magnitude;
2.4 state the number of significant figures in any given quantity;

2.5 express a given quantity to any stipulated number of significant figures.

Back <« > 89



Contents O

Calculating in Science

There comes a point in science when simply measuring is
not enough and we need¢alculatethe value of a quantity
from values for other quantities that have been measured
previously. Take, for example, the piece of granite shown in
Figure 3.1. We can measure the lengths of its sides and its
mass. With a little calculation we can also find its volume,
its density, and the speed at which seismic waves will pass
through a rock of this type following an earthquake.

This chapter looks at several scientific calculations, and in
the process considers the role of significant figures, scien-
tific notation and estimating when calculating in science. In

addition, it introduces unit conversions and the use of for-

mulae and equations.

Figure 3.1: A specimen of granite.
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3.1 Calculating area; thinking about units and significant
figures

Suppose we want to find the area of the top of the granite spec-
imen shown inFigure 3.1 The lengths of its sides, measured
in centimetres, are shown in Figure 3.2, and the area of a rect-
angle is given by

area of rectangle lengthx width
Thus the area of the top of the granite is

area= 84 cmx 5.7 cm

Multiplying the two numbers together gives 47.88. However, _ _
if given as a value for the area, this would be incomplete and Figure 3.2: The lengths of the sides of
incorrectly stated for two reasons. the specimen of granite.

1 No units have been given.

2 The values for length and width which we’ve used are each
given to two significant figures, but 47.88 isfaur signifi-
cant figures. This is too many.
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3.1.1 Units in calculations

The length and the width of the specimen of granite aren’t just
numbers, but physical quantities, with units. The area — the
result of multiplying the length by the width — is a physical
quantity too and it should also have units. The units which have
been multiplied together are ceicm, which can be written as
(cm)?, or more commonly as ¢t In fact any unit of length
squared will be a unit of area. Conversely, a value given for
area shouldlwayshave units of (lengtff)

M\f ja..rer\ has
an area of twe

All measurements should be given with appropriate units,
and when performing calculations the units of the answer
must always be consistent with the units of the quantities
you input.

Care needs to be taken when multiplying together two lengths which have been
measured in dierent units. Suppose, for instance, that we needed to find the area
of a 1 cm by 4 m rectangle. Units of caam are meaningless; we need to convert
the units to the same form before proceeding, and if in doubt it is best to convert to
Sl base units. Since 1 cem0.01 m, this gives an area of@ mx 4 m= 0.04 n?.
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Question 3.1 Answer
Which of the following are units of area:
(inch?; s%; m™2; cn?; km®; square miles?

Note: the symbols used for Sl units are as giveBax 2.1

3.1.2 Significant figures and rounding in calculations

It is not appropriate to quote answers to calculations to an unlimited number of
significant figures. Suppose that, as part of a calculation, you were asked to divide
3.4 (known to two significant figures) by 2.34 (known to three significant figures).
Entering 34+ 2.34 on most scientific calculators gives 1.452 991 453, but to quote a
result to this number of significant figures would imply that you know the answer far
more precisely than is really the case. The fact that 3.4 is quoted to two significant
figures implies that the first digit is precisely known, but there is some uncertainty
in the second digit; similarly the fact that 2.34 is quoted to three significant figures
implies that there is some uncertainty in the third digit. Yet in giving the result as
1.452991 453 we are claiming to be absolutely confident of the answer as far as
1.452 991 45, with just some uncertainty in the final digit. This is clearly nonsense!

The sensible number of significant figures to quote in any answer depends on a
number of factors. However, in the absence of other considerations, a simple rule of
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thumb is useful:

When multiplying and dividing numbers, the number of significant figureg
the result should be the same as in the measurement witbvlestsignificant
figures.

n

Applying this rule of thumb, the answer to the calculatiof-32.34 should be given
to two significant figures, i.e. as 1.5.

Similarly, the result of the multiplication.8 cmx 5.7 cm (used in finding the area
of the top of the granite specimen) should be given as 48 again to two signifi-
cant figures.

There are two points of caution to bear in mind when thinking about the appropriate
number of significant figures in calculations.

Avoiding rounding errors

You should round your answer to an appropriate number of significant figures at the
end of a calculation. However, be careful not to round too soon, as this may intro-
duce unnecessary errors, knownrasnding errors As an example of the dangers

of rounding errors, let’s return to our previous example. We found that:

34 +234=1452991453
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Or, giving the answer to two significant figures:
34+234=15

Suppose that we now need to multiply the answer by 5.9:
1452991453« 5.9 = 8572649 573= 8.6 to two significant figures

However, using the intermediate answer as quoted to two significant figures gives
15x 5.9 = 8.85 = 8.9 to two significant figures

Rounding too soon has resulted in an incorrect answer.

The use of scientific calculators enables us to work to a large number of significant
figures and so to avoid rounding errors. If this is not possible, you should follow the
following advice:

Work to at least one more significant figure than is required in the final answer,
and just round at the end of the whole calculation.

In our example, the final answer should be given to two significant figures, which
means that we should work using the result of the first calculation to at least three
significant figures (1.45).

1.45x 5.9 = 8.555= 8.6 to two significant figures.
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Applying common sense!

Always bear in mind the real problem that you are solving, and apply common
sense in deciding how to quote the answer. Particular care needs to be taken when
the calculation involves numbers which aactlyknown. A light-hearted example
should illustrate this point.

Question

Suppose you have 7 apples to share between 4 children. How many apples does
each child get?

Answer

Dividing the number of apples by the number of children gives

7

i 1.75
If we were to assume that the number of apples and number of children were
each quoted to one significant figure, we would round the answer to one signif-
icant figure too, i.e. to 2 apples. But we would then need eight apples, which
is more than we've got. In reality there agractly4 children and 7 apples, sc
the number of significant figures need not bother us. Provided we have a Knife,

it is perfectly possible to give each child 1.75§§hpples.
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Question 3.2

Do the following calculations and express your answers to an appropriate num-
ber of significant figures.

6.732

(@) Tl Answer

(b) 20x 25 Answer
4.2\?

(©) (3—1) Answer

(d) What is the total mass of threeslkg bags of flour? Answer

3.2 Calculating in scientific notation

In science it is very often necessary to do calculations using very large and very
small numbers, and scientific notation can be a tremendous help in this.

3.2.1 Calculating in scientific notation without a calculator

Suppose we need to multiply3D x 10* and 200 x 10°. The commutative nature
of multiplication is completely general, so it applies when multiplying two numbers
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written in scientific notation too. This means thas@x 10*) x (2.00x 10°) can be
written as (250 x 2.00) x (10* x 10°), i.e.
(2.50% 10%) x (2.00x 10°) = (2.50 x 2.00)x (10* x 10°)
=5.00x 10*°
=5.00x 10°
All of the rules for the manipulation of powers discussed in Chapter 1 can be applied
to numbers written in scientific notation, but care needs to be taken to treat the
decimal parts of the numbers (such as the 2.5050 2 10°) and the powers of ten
separately. So, for example
250x 104 250 10 250
= = x10%=125%x10"!
200x 106 2.00 106 _ 2.00 " X
and
(250 10°)” = 2,502 x (10P)° = 6.25x 1010
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Question 3.3

Evaluate the following without using a calculator, giving your answers in sci-
entific notation.

(@) (3.0x 10°) x (7.0x 1079 Answer
(b) ﬂ Answer
4x 1071
© 10% x (4 x 10%) j—
1x10°
(d) (3.00>< 108)2 Answer
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3.2.2 Using a calculator for scientific notation

In the rest of this chapter, and in your future studies of science generally, you will be
doing many calculations with numbers in scientific notation, so it is very important
that you know how to input them into your calculatdii@ently and how to interpret

the results.
First of all make sure that you can input numbers in scientific notation into your cal-

culator.You can do this using the button you used to input poweggation 1.3.1

but it is more straightforward to use the special button provided for entering scien-
tific notation. This might be labelled as EXP, EE, E or EX, but there is considerable
variation between calculators. Make sure that you can find the appropriate button on
your calculator. Using a button of this sort is equivalent to typing the wholg 1t

to the power’. So, on a particular calculator, keying 2.5 EXP 12 enters the whole of
2.5 x 102,
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In addition to being able to enter numbers in scientific notation into
your calculator, it is important that you can understand your calculator
display when it gives an answer in scientific notation.

Enter the number.8x 10'2 into your calculator and look at the display.

Again there is considerable variation from calculator to calculator, but it
is likely that the display will be similar to one of those shown in Figure
3.3. The 12 at the right of the display is the power of ten, but notice
thatthe ten itself is frequently not displaydflyour calculator is one of
those which displays.2 x 102 as shown in Figure 3.3e, then you will
need to take particular care; tldses notmean 252 on this occasion.

You should be careful not to copy down a number displayed in this way
on your calculator as an answer to a question; this could cause confusior
at a later stage.

No matter how scientific notation is entered and displayed on ypur
calculator or computer, when writing it on paper you should always
use the form exemplified by.2x 10*2.

(e)

To enter a number such ax80718 into your calculator, you may need _
to use the button labelled something likg— (as used irBection 1.1.3 Figure 3.3: Examples of how

in order to enter the negative exponent. various calculators would dis-
play the number % x 10'?
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To enter a number such as®ito your calculator using the scientific notation
button, it can be helpful to remember that?1i6 written as 1x 10° in scientific
notation, so you will need to key something like 1 EXP 8.

If you are at all unsure about using your calculator for calculations involving sci-
entific notation, you should repe@uestion 3.3this time using your calculator.

Question 3.4 Answer

A square integrated circuit, used as the processor in a computer, has sides of
length 978 x 10~° m. Give its area in rhin scientific notation and to an ap
propriate number of significant figures.

3.3 Estimating answers

The first time | attempted Question 3.4, my calculator gave me the ansvéen85

This is incorrect (I'd forgotten to enter the power of ten). It is sensible to get into the
habit of checking that the answer your calculator gives is reasonable, by estimating
the likely answer. In the case of Question 3.4, the answer showg®ximately
(1x10°2 m)2 which you can see (without using a calculator!) is 104 m?. So a
calculator answer of 96 n? is clearly wrong.
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In addition to being useful as a way of checking calculator answers, estimated an-
swers are, in their own right, quite frequently all that is needed. Chapter 2 began
with a comparison between the size of a bacterium and the size of a pinhead. We
could use precise measuring instruments to find that the diameter of a particular
bacterium is 69 um (i.e. 169x 10-° m) and that the diameter of the head of a
particular pin is 86 x 104 m. The diameter of the pinhead would then be

0.86x 104 m
1.69x 106 m

However, to get a feel for the relative sizes, we only really need to estimate the
answer. If an estimate is all that is required, it is perfectly acceptable to work to one
significant figure throughout (indeed, working to the nearest order of magnitude is
sometimes dilicient) and since the final answer is only approximately known, the
symbol =’ (meaning ‘approximately equal to’) is used in place of an equals sign.

= 5.83x 10? times bigger than that of the bacterium.
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Worked example 3.1

Working to one significant figure throughout, estimate how many times big-
ger a pinhead of diameter.8bx 10 m is than a bacterium of diametef
1.69x 106 m.

Answer

Diameter of pinhead 1 x 1073 m.
Diameter of bacteriun 2 x 10°% m.

diameter of pinhead  1x 1073 m
diameter of bacterium 2 x 10-6 m
1 103
X=X —
2 10°
~0.5x 10736
~ 05x 10°
~5x 107

So the diameter of the pinhead is approximately 500 times that of the bac-
terium.
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It is important that you write out your mathematical calculations carefully, an

d one

of the functions of the worked examples scattered throughout the course is to illus-
trate how to do this. There are three particular points to note from Worked example

3.1.

Taking care when writing maths

1 Note that the symbols and~ mean ‘equals’ and ‘approximately equalg
and shouldheverbe used to mean ‘thus’ or ‘therefore’. It is acceptable
use the symbal. for ‘therefore’; alternatively don’t be afraid to writgords
of explanation in your calculations.

2 It can make a calculation clearer if you align ther ~ symbols vertically,
to indicate that the quantity on the left-hand side is equal to or approxima
equal to each of the quantities on the right-hand side.

3 Note that the diameter of the bacterium and the pinhead each have m
(m) as their units, so when one diameter is divided by the other, the
cancel to leave a number with no units.

tely

etres
nits

The handling of units in calculations is discussed further in Section 3.5.4.
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Question 3.5 Answer

The average distance of the Earth from the Sun3€ & 10! m and the dis-
tance to the nearest star other than the Sun (Proxima Centau@is 206 m.

Working to one significant figure throughout, estimate how many times further
it is to Proxima Centauri than to the Sun.

3.4 Unit conversions

In calculating the area of the top of the granite specimen earlier in this chapter, we
measured the length of the sides in centimetres and hence calculated the arga in cm
If we had wanted the area in the Sl units of we could have converted the lengths

from centimetres to metres before starting the calculation. We would then have had

area= (84x102m)x (5.7x 102 m)=48x 103 m?

It is best, whenever possible, to convert all units to S| units before starting pn a
calculation.

Unfortunately it is not always possible to convert units before commencing a calcu-
lation; sometimes you will be given an area in, say2cwithout knowing how the
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area was calculated, and you will need to convert this to an ared.ifiiis section
discusses this, as well as some more complex unit conversions.

3.4.1 Converting units of area

Let's start with an example which is relatively easy to visual-
ize. Suppose we want to know how many fthere are in a
cn?. There are 10 millimetres in a centimetre, so each side of the «~—10mm—>
square centimetre in Figure 3.4 measures either 1 cm or 10 mm.
To find the area, we need to multiply the length by the width.
Working in centimetres gives

«—1cm——>
<10 mm——>

area=1cmx1cm= (1 cm?=1>cn? = 1lcn?

<«—1icm—>

Working in millimetres gives

area= 10 mmx 10 mm= (10 mrr)z = 10° mn? = 100 mnf Figure 3.4: A square centimetre
(not to scale)

Thus 1 cnt = 100 mnf and 1 mm = 1i00 cne.

If we want to convert from crito mn? we need to multiply by 100; if we want to
convert from mn to cn? we need to divide by 100.
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Figure 3.5 illustrates another example which is a little harder to
visualize. Each side of the square measures either 1 km or 1000 m
(10° m). Working in kilometres gives

<«—10°m —>

area= 1 kmx 1 km= (1 km)y = 1° km? = 1 kn?

Working in metres gives

area= 10 mx 10° m = (103 m)2 = (1@)2 m? = 106 m?

<« 1km —>
1l

<« 1km —>

Thus 1 knt = 1® m?and 1 nf = % km?.
To convert from krd to m? we need to multiply by 19 to convert
from m? to km? we need to divide by 10

The number by which we need to divide or multiply to convert from one unit to
another is known as theonversion factor’ In general, to convert between units
of area we need tequarethe conversion factor which we would use to convert
corresponding lengths.

Figure 3.5: A square kilometre
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As a final example consider a conversion betweeR &nd mnf.

There are 1®millimetres in a metre and £anetres in a kilome-
tre, so there are fOmillimetres in a kilometre as illustrated in
Figure 3.6.

To convert from kilometres to millimetres we need to multiply by
10°; however to convert from kfto mn? we need to multiply by

(1), ie. 102
Similarly, to convert from mr to km? we need to divide by

(1) ie. 102

<« 10 mm —>

<« 1km —>
<« 10 mm —

<« 1km —

Figure 3.6: A square kilometre

Question 3.6

A desk has an area of(4 n?. Express this area in:
(a) cn?

(b) pm?

(c) km?

Answer
Answer

Answer
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3.4.2 Converting units of volume

The volume of the piece of granite shownHRigure 3.2is given by
volume= lengthx width x height
The lengths of the sides ared&m, 57 cm and 48 cm, so

volume= 84 cmx 5.7 cmx 4.8 cm
= 2.3 x 107 cm® to two significant figures.

Note that the units which have been multiplied together arexam x cm, so in

this case the units of volume are &\ value given for volume shouldlwayshave

units equivalent to those used for (lengtt@nd if we had converted the lengths of
the sides to metres before doing the calculation, we would have obtained a value for
volume in ne:

volume= (8.4 x 107° m) x (5.7 x 1072 m) x (4.8 x 1072 m)
= 2.3x 104 m? to two significant figures.

The method for converting betweenfférent units of volume is a direct extension
of the method for converting betweenfférent units of area. Suppose we want to
know how many mrithere are in a cfh

Back < > 110



Contents O

There are 10 mm in 1 cm, so each side of the cubic centimetre
in Figure 3.7 measures either 1 cm or 10 mm. The volume can

be written as ejther 1 cfror 1® mm®. Thus 1 cmi = 10° mm?® L —tem—
and 1 mni = 15 cm®. To convert from crito mn?® we need to /\0“‘ T
multiply by 1%; to convert from mr to cn? we need to divide T E
In general, to convert between units of volume we needutae T

the conversion factor that we would use to convert corresponding l 10 mm
lengths. ~—10mm—>

We can convert a volume of2x 107 cm? into m? simply by say-

ing that there are £cm in 1 m; hence there afd(?)” cm® in Figure 3.7: A cubic centimetre (not

118 so to scale).
1cm = ! 3 m3
(1%
and
23x 10% cn® = w ms3
(10?)
=23x10*m?

This value is, of course, the same as the one we obtained from first principles!
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The prefix ‘deci’ meaning one tenth was introduce&atction 2.2thus 1 decimetre
(dm) is one tenth of a metre. The cubic decimetre{risisometimes used as a unit
of volume. The litre () (also introduced in Chapter 2) was defined in 1901 as the
volume of a kilogram of water at 4C, under standard atmospheric pressure. This
volume turns out to be.@00 28 dnd, and since 1969 a litre has beeefinedto be
1 dn?.
Worked example 3.2
Convert a volume of 1 dfnto: (a) cn? (b) m?
Answer
(@) 1m=10dmand 1 m= 100 cmso 1 dm= 10 cm.
Thus 1 dni = 10° cm?®.
(b) 1m=10dm
Thus 1 n? = 10° dm®
1
and1dni=-— m®=103m3.
1038
{Thus 1 dn? (i.e. 1 litre) is a thousand times bigger than a cubic centimgtre
and a thousand times smaller than a cubic metre. You may already have|been
aware that 1 litre= 1000 cn?. Thus 1 ml= 1 cn®. }
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Figure 3.8is a summary of unit conversions for length, area and volume, but you
should try to remember the general principles involved rather than memorizing in-
dividual conversion factors.

Question 3.7

Express each of the following volumes in scientific notation fh m

(a) the volume of the planet Mars, which i$6# x 10! km3; Answer

(b) the volume of a ball bearing, which is 16 m Answer
3.4.3 Converting units of distance, time and speed
You were introduced iBox 2.1to the metre as the base unit of distance or length
and to the second as the base unit of time. The average speed with which an object
moves is the total distance travelled divided by the total time taken, so when Marion
Jones won the women’s 100-metre final at the 2000 Sydney Olympics %0
her average speed was

1000 m
=9.302ms?

average speesd 1075 5 9.302ms
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Similarly, if a girl grows a total of 116 cm in 12 years, her average rate of growth
IS

116 cm

—— =028 rl
125 years cmyear

growth rate=
Note that it is appropriate to give the answer to the first example to four significant
figures (assuming that the length of the running track was known to at least four

significant figures). Also note the way in which the units have been written in both
examples.

The notation of negative exponents, which we have used to represent numbers
like 1/2% as 23 and /108 as 108, can also be used for units. Sgslcan
be written as s, m/s can be written as nT$ and cnyyear can be written as
cmyear?,

The Sl unit of speed is nT$ and this is usually said as ‘metres seconds to the minus
one’. Although m st is the correct scientific way of writing the unit, it is sometimes
written as njs, and quite frequently said as ‘metres per second’, even when written
as mst. The ¥ for per is quite commonly used in other units too.
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Many things move andr grow in the world around us, and it is useful to com-
pare diferent values for speed or rate of growth.ffBient speeds are frequently

measured in dierent units, so in order to be able to compare like with like

it is

necessary to convert betweerfeient units for distance, time and speed. Box 3.1

considers various examples of speed and growth, and the text immediately fo
the box looks at ways of converting one unit to another.

llowing

Box 3.1 How fast?

Light (and other forms of radiation such as X-rays and radio waves) travels
vacuum with a constant speed 008x 108 ms™. Itis currently believed that
nothing can travel faster than this.

Towards the opposite extreme are stalactites and stalagmites, which groy
fractions of a millimetre each year. A typical growth rate i fm year?.
Stalactites form when water drips from the roof of an underground cave,
positing calcite (frequently from the limestone in the rock above the cave
an icicle shaped formation as it does so. Stalagmites form as the water
onto the floor of the cave, depositing further calcite.

na

V just
de-
in
drips
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Figure 3.9: The Saskatchewan Glacier, Baational Park, Canada.

It is not normally possible to detect the motion of a glacier by eye, but trﬁre
is considerable variation in the speed with which they move. The Franz Josef
Glacier in New Zealand is particularly fast moving, with an average speed of
about 15 mday!. The speed of the Saskatchewan Glacier in Canada (Figure
3.9) is rather more typical, at about 12 cm day

In addition to geological processes such as glacier flow and stalactite formation,
the theory of plate tectonics tells us that the surface of the Earth is itself moying.

The Earth’s surface is thought to comprise seven major tectonic plates| and
numerous smaller ones, each only about 100 km thick but mostly thousands of
kilometres in width. Evidence, including evidence from sea-floor spreading (to

be discussed in Chapter 5) indicates that plates move relative to one another
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with speeds between about 10 kmMand 100 km Ma! (where Ma is the
abbreviation for a million years, as discusse&®ettion 2.2.

P waves S waves Love waves Rayleigh waves

| E—
5 minutes

Figure 3.10: A seismogram (the printout from a seismometer) showing|the
arrival of P waves, S waves, Love waves and Rayleigh waves from a distant
earthquake. Elapsed time increases from left to right.

Earthquakes and volcanoes occur all over the Earth, but they are more com-
mon close to the boundaries of tectonic plates than elsewhere. Following an
earthquake, seismic waves (the word ‘seismic’ is from the Greek for ‘shak-

ing’) travel out from the centre of the quake and are recorded by seismometers
at various locations. There are severdtatient types of seismic waves, in
cluding P waves, S waves, Love waves and Rayleigh waves, each travelling at
different speeds (and sometimes also Wedent routes), so reaching a given
seismometer at fferent times (see Figure 3.10). P waves travel fastest, with
an average speed of aboué%&m st in rocks close to the Earth’s surface, so
reach the seismometer first (the name P wave was originally an abbreviation
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for primary wave). S waves (S for secondary) travel with an average speed of
about 34 km st in rocks close to the Earth’s surface.

Perhaps the most dangerous sort of volcanic eruption is one that leads to a
high-speed pyroclastic flow (a mixture of rock fragments and gases, moving as
a fluid) away from the volcano. Pyroclastic flows are particularly destructive
both because of their high temperatures (typically betweert20ihd 700°C)
and the high speed at which they travel (up to about 100 knTfpur

The speeds given so far have related to processes on the Earth, but remember
that the Earth itself is moving too! The rotation of the Earth on its axis leads to

a movement of up to.8 km s at the surface. In addition, the Earth is orbiting
the Sun at about 30 kmsand the entire Solar System is moving around the
centre of the galaxy at about 250 knts

To convert from one unit of speed to another, we may need to convert both the
unit of distance and the unit of time. To start with, let's consider the rather more

straightforward case when we only have to convert the unit of distance, for example
in converting from mmst toms™.

We know that 1 m= 103 mm

solmm:imzlxlo‘“?m
108

We can therefore say straight away that 1 mf=s1x 103 mst
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We have simply applied the same conversion factor as in converting from mm to m.
Note that the answer makes sense: it is reasonable to expect that the numerical value
of a speed in m3 will be smaller than the same speed when given in min s

Worked example 3.3

Convert the speed of the Earth as it orbits the Sun (given above as 30-km s
into a value in m3t.

Answer
1km=1x10°m
So

1kmsl=1x108 ms!

30 kms!=30x10®ms
= 3.0 x 10* m st in scientific notation.
The Earth orbits the Sun with a speed of abo®>310* mst. Again the

answer makes sense: it is reasonable to expect that the numerical value of a
speed in mst will be larger than the same speed when given in kln s
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Next let’'s consider what happens when we need to convert only the time part of
units of speed, for instance in converting from km hduo km s2.

We know that there are 60 minutes in an hour and 60 seconds in a minute, so
1 hour= 60x 60 s= 3600 s

However, in this case we don’'t want to convert from hours to seconds, but rather
from kilometresper hourto kilometresper second The way forward comes in
recognizing that the word ‘per’ and the use of negative exponents imhand st
indicate division. So to convert from hourto s (or from km hour?! to kms™1)

we need to find the conversion factor from hours to seconds andithiele by it.

1 hour= 3600 s

1
_1 -1
so 1 kmhour- = —3600kms

In deciding whether to divide or multiply by a particular conversion factor, common
sense can also come to our aid. It is reasonable to expect that a speed quoted in
kms will be smallerthan the same speed when quoted in km hbuso it is
reasonable tdivide by the 3600 on this occasion.

Back < > 120



Contents O

Worked example 3.4

Two tectonic plates are moving apart at an average rate of 35 knh.\tanvert
this to a value in km yeat.

Answer

We know that
1 Ma= 10° years

SO

1kmMal= % kmyear?!

and therefore

35 kmMa?l = 1%56 kmyear?!

= 3.5x 107° kmyear? in scientific notation.
The plates are moving apart at an average ratesok30~° kmyear.

This answer is reasonable: you would expect the rate of separation quoted in
kmyear?! to be smaller than the same rate quoted in kmMa
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Question 3.8

Convert the average speed of the Saskatchewan Glacier (12 cf) daya
value in:

(a) mday? Answer

(b) cms? Answer

Finally we need to consider conversions for speed in which both the units of distance
and the units of time have to be converted. This is simply a combination of the
techniques illustrated in Worked examples 3.3 and 3.4. Suppose we want to convert
from km hour! toms™.

1km=10°m
1 hour= 3600 s

To convert from km hour* to ms, we need tanultiply by 13 (to convert the km
to m) anddivideby 3600 (to convert the hott to s71):

1 C g .
1 kmhour? = f(go ms ! =0.278 ms?! to three significant figures.
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Worked example 3.5

Convert the average speed of separation of the tectonic plates discussed in
Worked example 3.4 (35 km M4) to a value in mm year.

Answer
1km=10mand 1 m= 10° mm, so 1 km= 10° mm
1 Ma = 10° year

To convert from km Mat to mm year?, we need tanultiply by 1 (to convert
the km to mm) andlivide by 1 (to convert the Ma' to year?.

10°
1 kmMa! === mmyear! = 1 mmyear?
106
Thus a speed given in km Mais numerically equal to one given in mm yehr
The plates are moving apart at a 35 mmyeéarThis is similar to the rate at
which human fingernails grow and is easier to imagine than is 35 kntMa
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Question 3.9

Convert each of the following to values in misand then compare them.
(a) A stalactite growth rate of.@ mmyear?. Answer
(b) The average speed of the Saskatchewan Glacier (12 cm)day Answer

(c) The speed of separation of the tectonic plates discussed Answer
Worked examples 3.4 and 3.5 (35 km Ma

(Note for the purposes of this question, consider 1 year to be 365 days long.)

Back < > 124



Contents

3.4.4 Concentration and density; more unit conversions

Methods for converting units for physical quantities, such as concentration and den-
sity, follow directly from the discussion in the previous sections.

Box 3.2 Concentration

The concentration of a solution is a term used as a measure of how much of a
certain substance the solution contains, relative to the solution’s total volume.
For example, we may want to know how much sugar has been dissolved in
water to give one litre of syrup.

The amount of the substance can be measured in moles, in which case the
concentration will have units of mot} or mol dnT3. Alternatively, the amount
can be measured by mass, in kg, g, mg, etc., leading to units for concentration
of kgdm3, gm 3, or mg 2, and so on.

The World Health Organization (WHO) sets limits for safe concentrations of
various impurities in water, for example, the limit for the concentration of ni-
trates in water is currently 50 mgl. This means that there should be no more
than 50 mg of nitrate in each litre (dinof water.
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To convert a concentration from, say, mgto g mi~ you need to follow a very ltis very easy to
similar procedure to the one introducedSection 3.4.3as the following worked confuse the letter ‘I’,

example shows. used as the symbol for
litres, with the number
Worked example 3.6 1. Take care!

Convert 50 mgi! (the World Health Organization’s limit for the concentration
of nitrates in water) to a value img ml=2.

Answer

We can easily write down the conversion factors for mgugpand from litres
to ml.

1 mg= 10° pg
1litre=11= 10 ml

So to convert from mgt to ug mi~t, we need tamultiply by 10° (to convert
the mg topg) anddivideby 1 (to convert the1! to mi™1).

1mgl?!= % ugmi~t =1 pgmi~t

Thus a concentration given in ngtlis numerically equal to one given in
ng mi=t, in particular 50 mgi! = 50 ug mi~t.
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Box 3.3 Density

=)

The density of a piece of material is found by dividing its mass by its volume.

In other words
mass

density= volume

If mass is measured in kg and volume is if, rthen it follows that the unit of
density will be kgm? (said as ‘kilograms per metre cubed’) or, written in the
form favoured in this course, kgTh (said as ‘kilograms metres to the minu
three’).

The density of pure water isxX 10° kg m™3; materials with a density greatef
than this (such as steel of density8% 10° kgm3) will sink in water
whereas materials of lower density (such as wood from an oak tree, density
6.5 x 107 kg m~3) will float.

If mass is measured in g and the volume is incithen the unit of density
will be gcnm3. Note that gcm? is not an S unit, but it is nevertheless quite
frequently used.

[72)
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Question

The specimen of granite shownigure 3.2has a mass of.B0x 107 g. Cal-
culate the density of the granite in g cfn

Answer
The volume of the specimen8.4 cmx 5.7 cmx 4.8 cm, so

mass
volume
_ 6.20x 107 g
~ 84 cmx5.7 cmx 4.8 cm
=2.6977 gcm®

= 2.7 g cni 3 to two significant figures.

density=

Note that it was not necessary actually to calculate a value for volume before
completing the calculation of density. If you had used the value for volume
calculated at the beginning 8kction 3.4.2you would have obtained

. mass 6.20x10%g
density= - =27 gcm?
enSy= Volume 2.3x 10% cm? JEIL

but you would have risked introducing rounding errors.
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The final worked example in this section converts the units of the density of the
granite specimen from g crto kg 3, using a method which is a combination of

the techniques taught throughout Section 3.4. You can convert units of concentration
such as mg dir? to g nT23 in a similar way.

Worked example 3.7

Convert 27 gcnt? (the density of the specimen of granite shown in Figures
3.1 and 3.2) to a value in the Sl units of kgn

Answer

1kg=10°g, solg_ kg = 1073 kg

1m=10Pcm,solm= (102) cm® = 10° cm?® (from Section 3.4.p

solcnt= =10°%m3

106

To convert from g cm?® to kg 23 we need tanultiply by 1072 (to convert the
g to kg) anddivide by 1079 (to convert the cm? to m™3).

1gents = kg m3=10308 kgm=3 =103 kgm3

106
Thus 27 gent3 = 2.7 x 10° kg m™3.

The specimen of granite has a density af 2 10° kg m™3
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You may have already known that you need to multiply by 1000 in order to convert
from units of g cn® to units of kg N3, but as was the case with the unit conversions
for area and volume, it is better to consider general principles rather than trying to
memorize conversion factors.

Question 3.10

The World Health Organization reduced its maximum recommended concen-
tration for arsenic in drinking water from 50y 1= to 10 ug 1=t in 1999. Con-
vert 10ug |~ to a value in:

(@) pgmlt Answer
(b) mgdnr3 Answer
(c) gm Answer
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3.5 Anintroduction to symbols, equations and formulae

To progress further in our exploration of ways of calculating in science, we need to
enter the world of symbols, equations and formulae. The Vagkbra’is used

to describe the process of using symbols, usually letters, to represent quantities
and the relationships between them. Algebra is a powerful shorthand that enables
us to describe the relationships between physical quantities briefly and precisely,
without having to know their numerical values. Some people consider algebra to be
a beautiful thing: others are filled with terror by the very word. This course may not
convince you of algebra’s beauty, but it should at least illustrate its usefulness and
give you an opportunity to learn and practise new techniques or revise old ones.

Chapter 4 is devoted to algebraic techniques such as simplifying, rearranging, and
combining equations. The remainder of Chapter 3 simply introduces the language
of algebra by looking at a few equations very carefully, and substituting values into
them.

The wordequationis used for an expression containing an equals sign. The quanti-
ties under consideration may be described in words, for example

mass
volume
in which case the equation is known aswerd equation; or represented by sym-
bols, for example

density=
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but the important thing to remember is that what is written on the left-hand side of
the ‘=" sign mustalwaysbe equal to what is written on the right-hand side. Thus, as
explained inTaking care when writing matha Section 3.3you should never use
‘="as a shorthand for anything other than ‘equals’.

The wordformulais used in mathematics to mean a rule expressed in algebraic

symbols. Thup = m is a formula which tells you that the densityof a substance

can be obtained by dividing the mass,of a sample of the substance by the volume,
V, of the sample. Strictly speaking, not all equations are formulae, but the words
tend to be used interchangeably.

3.5.1 What do the symbols mean?

Mathematics textbooks teaching algebra frequently contain page after page of equa-
tions of the form:

X+3=8 (3.1)
and
y=X+5 (3.2)

In Equation 3.1x can only have one value, i.e. it is a constant. In this calsas
the value 5. In Equation 3.% andy arevariableswhich can each take an infinite
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number of values, buytwill always be 5 greater thax The values (ok andy, etc.)
which satisfy a particular equation are knownsa¢utionsand if you are asked to
solvean equation you need to look for solutions.

In both Equation 3.1 and Equation 3x2andy represent puraumbers Equations
in science are often ratherfiérent. Rather than representing pure numbers, the
symbols usually represent physical quantities and will therefore inaitgattached.

3.5.2 Which symbols are used

Box 3.4 contains a range of scientific formulae in common use, along with a brief
explanation of the meaning of each symbol used. Have a quick at these equations
now, but don’t worry about their details; you are not expected to learn them or to
understand the meanings of the scientific terms introduced. The equations in the
boxes will be used as examples throughout the rest of this chapter, and have been
numbered for ease of reference.

The symbol chosen to represent something is often the first letter of the quantity in
question, e.gm for mass for time andl for length, but it isn’'t always so simple.
Greek letters are also frequently used as symbolsigllgmbda) for wavelength in
Equation 3.1&ndp (rho) for density irEquations 3.93.10and3.11 A list of Greek
letters and their pronunciation is given in tihable 3.1and you will soon become
familiar with those that are commonly used. In a sense it doesn’t matter which
symbol you use to represent a quantity, since the symbol is only an arbitrarily chosen
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label. For instance, Einstein’s famous equatiBgyation 3.J is usually written as

E = mc&, but the equation could equally well be written using any symbols you
wanted to use, e.gp = gr?, provided you also made it clear thatwwas used to
represent energyy was used to represent mass andias used to represent the
speed of light. However, the use of conventional symbols, sudh fas energy,
saves scientists a lot of time in explaining their shorthandths for Sciencéllows
convention as far as possible in its use of symbols. Sometimes the reason for the
choice of symbol will be obvious but unfortunately this is not always the case.

Sometimes a subscript is used alongside a symbol in order to make its meaning more
specific, as invj, vy andvy, used inEquation 3.150 mean initial, final, and average
speed, andy in Equations 3.1@nd3.17used to mean acceleration along xaxis.

Note that althouglay, for example, uses two letters, it represents a single physical
entity; note also thady is notthe same aax. The symbolA (the Greek upper case
delta) is frequently used to represent the change in a quantiyTsa Equation
3.14means a change in temperatleagain asinglephysical entity is represented

by two letters.

A few letters have more than one conventional meaning, for exaaipl&quation
3.7represents the speed of light, buEguation 3.14he same letter represents spe-
cific heat capacity. Other letters have two meanings but lower case is conventionally
used for one meaning and upper case for the other, for exanipispeed an® for
volume ort for time andT for temperature. Care needs to be taken, but the intended
meaning should be clear from the context.
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Unfortunately some Greek letters look rather like everyday English ones; for exam-
ple p (rho), used for density, can look rather like the English lower gas8ome
textbooks use lower cagefor pressure (this course uses capRaland Equation

3.11 (P = pgh) can then appear to have the same quantity on both the left- and
right-hand sides of the equals sign, especially when written out by hand. In reality,
this formula hagpressureon the left-hand side andknsity(and other things) on the
right-hand side. A similar confusion can arise because the lettan look like the
number 1.

A final possible source of confusion stems from the fact that the same letter may

sometimes be used to represent both a physical quantity and a unit of measurement.

For example, an object with a mass of 6 kilograms and a length of 2 metres might
be described by the relationships= 6 kg,| = 2 m, where the letter m is used to
represent both mass and the units of length, metres. In all material for this course,
and in most other printed text, letters used to represent physical quantities are printed
in italics, whereas those used for units are not.
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3.5.3 Reading equations

To understand, and thus use, the equatioridox 3.4you need to be aware of a few
rules and conventions. Most of these are extensions of things you have learnt earlier
in this course. First:

When using symbols instead of words or numbers, it is conventional to drop
the X’ sign for multiplication.

So inEquation 3.6mameans massmesmagnitude of acceleration andiguation
3.1], pgh means densityimesacceleration due to gravitymesdepth.

Rules of arithmetic, such as the fact that addition and multiplication are com-
mutative, and thd8EDMAS order of operations, apply when using symbols
too.

The fact that multiplication is commutative means that equations involving several
multiplications can be written in any order. &guation 3.14ould be (and some-
times is) written ag] = cmAT instead ofj = mc AT. Addition is also commutative,
soEquation 3.1&ould be written asy = axt + Uy instead ofvy = uy + axt.

Although the order in which multiplications are written doesn’t matter, various con-
ventions are generally applied. Note tha&quation 3.3C = 27xtr), the number 2
is written first, then the constant, then the variable. This order (numbers, then

Back <« > 136



Contents

constants, then variables) is the one that is generally applied. Simiagymc
(Equation 3.7 could be written a& = ¢®m, but it generally isn’t! Variables that are
raised to a power tend to appear at the end of equations.

BEDMAS tells us that operations within brackets take precedence, i.e. operations

inside brackets should be evaluated before those outside the brackets. When work-
ing with symbols, this means that an operation applied to a bracket applies to every-

thing within the bracket. So iEquation 3.19the whole of(%) is raised to the

power%. Equation 3.2Quses two sets of brackets ff@dirent styles of brackets have
been used to avoid confusion). The inner, round brackets ( ) are used to indicate
thatL should be divided by the whole of #4) and the outer, square brackets [ ]

are used to indicate that the wholelgf(4st F) should be raised to the powér.

There are two further points to note that are linked to the use of brackets.

1 A square root sign and a horizontal line used to indicate division can both be
thought of as containing invisible brackets, i.e. the square root sign is taken to
apply to everything within the sign and the division applies to everything above

the line. So, inEquation 3.10the square root applies to the whole(%‘), (this
H z

means that_/= could be written as\/—'li), and inEquation 3.1%he whole of
P b
(vi + vf) should be divided by two.

2 Throughout this course, brackets are sometimes used for added clarity even when
this is not strictly necessary. In addition, you are encouraged to add your own
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brackets whenever you think doing so would make the meaning of an equation
clearer.

The ‘E’ in BEDMAS (seeSection 1.4 tells us that exponents take precedence over
divisions and multiplications, so iBquation 3.71E = mc) the ¢ must be squared
before being multiplied byn. This means that it isnly the c that is squared, not
them. For clarity you could write this ak = m(cz), but it is very important to

remember thamc® # (md?, i.e. thatm@ # mPc?, where the symbok means ‘is
notequal to’.

BEDMAS also reminds us that multiplications should be carried out before addi-
tions and subtractions, so Equation 3.16ax andt should be multiplied together
beforeuy is added.

Finally, note that all of the rules discussed in Chapter 1 for the writing and manipu-
lation of fractions and powers apply when using symbols, in exactly the same way as

. . . ayt?
they do when using numbers. Sfquation 3.1€ould be written asy = uxt + XT
. . . G .
instead ofs, = uyt + %axtz; Equation 3.1&ould be written agq = Témz instead

of Fg=G @ ; and the following two representationsiBduation 3.20although

r
they look very diferent, are actually identical in meaning:
— L _ 1/2
d= w/47“: d=[L/(4ntF)]
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Question 3.11 Answer

Which two pairsof equations foia of those given below are equivalent? Yo
should be able to answer this question by just looking at the equations, but you
might like to check your answer by substituting values suck as3,y = 4,

[

z=5.
) a=x(y+2
(i) a=xy+z
(i) a=(y+2x

(iv) a=x+yz

(V) a=z+yx
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Question 3.12 Answer
Two of the equations given below fon are equivalent. Which two? Again
you should attempt this question initially by simply looking at the equations.
. bac®
O m="g
) e
(ll) m= aT
bc?
(i) m= a?
. abc
(iv) m= —d
2,22
) m= 2
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3.5.4 Using equations

Substituting values into equations provides a way of checking your understanding
of many of the techniques introduced in this chapter, especially the correct reading
of equations, the use of scientific notation, and the need to quote answers to an
appropriate number of significant figures. It also provides an opportunity for you to
extend your understanding of units in calculations and to begin to think about how
to choose an appropriate equation to use in answering a particular question. Don’t
worry about the science in the worked examples in this section; they are given as
illustrations of good practice for substituting values into equations.

Worked example 3.8

Usevy = Uy + axt (Equation 3.1pto find the speed reached afted® s by a
stone thrown downwards from aflith initial speed 15 m s™L. This situation
is illustrated inFigure 3.11 You can assume that tleagnitude(size) of the
acceleration is 81 ms2, where ms? are the Sl units of acceleration.

Answer

Equation 3.16states that/y = uyx + axt, and we are trying to findy. The
question tells us that

Uux=15ms! a,=981ms? t=045s
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Thus
Vy = (1.5 m §1) + (9.81 ms?2 x 0.45 s)

where the units of, are ms2 and the units of are s, so the units Gt are
ms? x s. Simplifying this gives
_mxg m 1

_2 m
MS“XS=— XS= ms
S sxg s

So

Vg = 15ms?t+44145 ms?

= 5.9 ms ' to two significant figures,

i.e. the speed after 0.45 seconds.B & s .
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Note, fromWorked example 3,&he following points about the handling of units:

1 Calculations have been done in Sl units.

2 Units have been included next to values at all times, and the units in the final
answers are both consistent with the workargl what we would expect the
units of the final answer to be.

The second point follows from what was said about unitSeation 3.1.1we have

input values with units of ms for initial speed, units of s for time, and units of

m s2 for acceleration, and the units for final speed haweked out to ben s 1. We

have not simply assumed the units for final speed to belpbsit rather have calcu-

lated the units fowy at the same time as calculating the numerical value. Handling
units in this way ensures that the answers are expressed as physical quantities (with
units), not just numbers. It also gives an easy way of checking a calculation. If the
final units inWorked example 3.8ad come out as 5~ you might have realized

that, since these aret units of speed, you must have made a mistake.

Itis good practice to work out the units in this wayalth your scientific calculations.
To enable you to do thigdox 3.5explains a little more about some of the derived
units that you will encounter in this course.
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Box 3.5 Derived Sl units

Box 2.1 introduced the Sl base units, and since then you have encountered
the Sl units of ms! for speed, kg m? for density and m< for acceleration.
These units are combinations of the base units m, kg and s; other physical
guantities have units involving other base units too. Some physical quantities
are so commonly used that their units have names and symbols of their pwn,
even though they could be stated as a combination of base units. Several of
these derived units are listed in Table 3.2. Note that if you becomgiaiently
famous scientist you are likely to end up with a unit named after you! The upits

in Table 3.2 are named after Sir Isaac Newton, James Prescott Joule, James
Watt, Blaise Pascal and Heinrich Hertz respectively.

Physical quantity Name Symbol Base unit
of unit for unit equivalent
force, such as weight  newton N kg ts
energy joule J kg s
power watt W kgms3
pressure pascal Pa kghs2
frequency hertz Hz k]

Table 3.2: Some derived units
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Note also that many of the derived units are interlinked:

1J=1Nx1m
17

1W=—
1s
1N

1Pa= —
1m?

The following data may help to illustrate the sizes of the units:

e An eating apple has a weight of about 1 N on Earth;

An athlete with mass 75 kg, sprinting at 9 rtshas an energy of abou
3000 J;

A domestic kettle has a power rating of about 2500 W,

Atmospheric pressure at sea-level is abotR8;

The human heart beats with a frequency of aboBitHz.
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To find the units oWescin Worked example 3.9, you need to use the fact, from Table
3.2, that 1 N= kgms?2. This worked example also provides a reminder of the
importance of converting to Sl base units before beginning a calculation.

Worked example 3.9

2GM\Y?
UseVesc = (T) (Equation 3.19to find the escape speeds; needed

for an object to escape from the Earth’s gravitational attraction. The mass of
the EarthM = 5.98 x 10?4 kg, the radius of the EartlR = 6.38 x 10° km and
G = 6.673x 101 Nm?kg2.

Answer
ConvertingR to S| base units gives
R=6.38x 10° km

= 6.38x10°x 10° m
=6.38x 10° m

M = 5.98x 107* kg
G =6.673x 10 Nm? kg2
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Substituting in Equation 3.19

2GM\Y?
Vesc = (T)
B (2 x 6.673% 10°11 N m? kg2 x 5.98 x 10% kg)l/ 2
6.38x 106 m

Rearranging this so that the units on the top of the fraction are all togethe
get

2% 6.673x 1011 x 5.98 x 107N m? kg2 kg)l/ 2

V, =
ese ( 6.38x 10° m

Since 1 N= 1 kg ms2, this can be rewritten as

B (2 x 6.673x 10711 x 5,98 x 10%*kgm s2m2 kg2 kg)l/ 2
eser 6.38x 106 m
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This can be simplified by cancelling some of the units

- (2 x 6.673x 10711 x 5,98 x 1074 ke pris™2 m? kg%yg)” 2
6= 6.38x 106 1

Calculating the numeric value, and reordering the units, we have

2
Vesc = (1.2509>< 10° m? 5‘2)1/

Taking the square root of both2609x 108 and nf s~2 gives

Vesc= 1.12x 10* m s to three significant figures.

The escape speed isl2 x 10* ms™1, with units of ms?, as expected.
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Question 3.13 Answer

In a classic experiment in the USA in 1926, Edgar Transeau calculated the
amount of energy stored in the corn plants in a one-acre field in a 100;day
growing period to be D6x 108 kJ. This isNPP in Equation 3.8 For the
same field and the same time period, he found the energy used by the plants in
respiration R) to be 323 x 107 kJ. UseEquation 3.8o find the corresponding
value of GPP, the total energy captured by the plants.

Question 3.14 Answer

UseEquation 3.130 find the speed of waves (in m'y which have a frequency
of 4.83x 104 Hz and a wavelength of 621 nm.

The final worked example in this section returns us to the piece of granite introduced
at the beginning of the chapter. Itis perhaps a somewhat more realistic example than
Worked examples 3.8 and 3.9 because the question does not tell us which formula
to use.
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Worked example 3.10

The rigidity modulus of granite (a measure of the rock’s ability to resist defor-
mation) near the surface of the Earth i 8 10'° Nm~2. Use this value, and
the value you found previously for the density of granite to find the speed of S
waves travelling through granite.

Answer

Which equation shall we use? When faced by this dilemma it is best to start
by thinking carefully about what you already know and what you want|to

find. On this occasion we're told that the rigidity modulus 8 8 101 Nm2

and we know (fromWorked example 3)7that the density of granite is
2.7 x 10° kg m™2 (using a value to three significant figures to avoid rounding
errors). We need to find a value for S wave speed. So we need an equa-
tion which links density, rigidity modulus and S wave speEduation 3.10

(Vs = \/E) from Box 3.4fits the bill.
0

Simply finding an equation from a list, all that is possible in this course| is

somewhat unlike the situation you are likely to encounter in the real scientific
world. Nevertheless, the principle of starting each question by thinking abhout
what you already know and what you want to find is a good one, and on [this
occasion it makes it straightforward to find an equation to use from Box 3.4.
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VS:\/E
P

u=30x100Nm>2
p=270x103 kgm™

So

_ [3.0x100Nm=2
*7 N 2.70x 108 kg m3

Since 1 N= 1 kg ms?, this can be rewritten as

_ [3.0x100kgms2m2
ST 2.70x 103 kg m3

This can be simplified by cancelling the kg on top and bottom of the fractig

3.0x 1010y«gjm s2m-2
VS =
2.70x 108 y(gi 3

n
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Calculating the numeric value, and combining the m and am the top of the
fraction with the m® on the bottom, we have

Vs = V1.11x 107 m2s2
= 3.3x 10® m s to two significant figures

So the S waves travel with a speed @& 8 10° m st through granite.

Question 3.15

The Earth has an average radius &x 10° km and a mass o0f. 97 x 10?* kg.
The Moon has a mass 0f36 x 10?2 kg. The distance between the Earth and
the Moon is 334 x 10° km andG = 6.673x 10-11 N m2kg2. Use appropriate
equations fronBox 3.4to calculate:

(a) the Earth’s volume (in [); Answer

(b) the magnitude of the gravitational force between the Earth anéinswer
the Moon (in newtons).

Note on this occasion you should be able to work out the final units of your
answer without expressing newtons in the form of base units. This is further
discussed in the answer to the question.
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3.6 Learning outcomes for Chapter 3

After completing your work on this chapter you should be able to:

3.1 demonstrate understanding of the terms emboldened in the text;
3.2 perform calculations to an appropriate number of significant figures;
3.3 give answers to calculations in appropriate Sl units;

3.4 carry out calculations in scientific notation, both with and without the use of a
scientific calculator;

3.5 estimate answers to one significant figure;

3.6 convert between various units for quantities such as area, volume, speed,
density and concentration;

3.7 demonstrate understanding of the rules and conventions used in scientific
formulae;

3.8 substitute values (numbers and units) into scientific formulae.
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Algebra

At the end of Chapter 3 we used the equatgn=  to calculate the S wave
P

speedys, of seismic waves passing through a rock of densayd rigidity modulus
. But suppose that, instead of knowipgandu and wanting to findis, we know

u

Vs andp and want to find«. The best way to proceed is to rearrange= /= to
P

makeyu the subjectof the equation, where the word ‘subject’ is used to mean the
term written by itself, usually to the left of the equals sign. Rearranging equations
is the first topic considered in Chapter 4. The rest of the chapter introduces methods
for simplifying equations and ways of combining two or more equations together,
and it ends with a look at ways of using algebra to solve problems.
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4.1 Rearranging equations

There are many ¢lierent methods taught for rearranging equations, and if you are
happy with a method you have learnt previously it is probably best to stick with
this method, provided it gives correct answers to all the questions in this section.
However, if you have not found a way of rearranging equations which suits you,
you might like to try the method highlighted in the blue-toned boxes throughout
this section. This method draws on an analogy between an equation and an old-
fashioned set of kitchen scales, and considers the equation to be ‘balanced’ at the
equals sign. The scales will remain balanced if you add a 50 g mass to one side of
the scales, or halve the mass on one gudavidedyou do exactly the same thing to

the other side. In a similar way, you can do (almost) anything you like to one side
of an equation and, provided you do exactly the same thing to the other side, the
equation will still be valid. This point is illustrated #igure 4.1

The following rule summarizes the discussion above:

Whatever you do mathematically to one side of an equation you must alsp do
to the other side.

This rule is fundamental when rearranging equations, but it doesn't telinai
operation to perform to both sides of an equation in order to rearrange it in the way
you want. The highlighted points below should help with this, as will plenty of
practice.
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Two things are worth noting at the outset:

1 Equations are conventionally written with the subject on the left-hand side of the
equals sign. However, when rearranging an equation it can very often be helpful
simply to reverse the order.

So if you derive or are given the equatios: a+ b you can rewrite itaa+b = c;
if you derive or are given the equatiaib = c you can rewrite it ag = ab.

2 Even if you choose the ‘wrong’ operation, provided you correctly perform that
operation to both sides of the equation, the equation will still be valid. Suppose
we want to rearrange the equatior= a + b to obtain an expression fa We
could divide by two, as illustrated dyigure 4.1¢this gives

c_a+b

2 2

This is a perfectly valid equation; it just doesn’t help much in our quest.fédhe
numbered points below give some hints for more helpful ways forward, and each
guideline is followed by an illustration of its use.

In the numbered hints the wordgpressiorandtermare used to describe the parts

of an equation. An equation must always include an equals sign, but an expression
or term won’'t. A term may be a single variable (suchvg®r uy in the equation

Vx = Ux + axt, or a combination of several variables (suchag3; an expression is
usually a combination of variables (suchags$ or uy + axt, but the words are often
used interchangeably.
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Hint 1

If you want to remove an expression thatugdedto the term you wantsub-
tract that expression from both sides of the equation.

To rearrangea + b = ¢ to makea the subject, note that we need to remove lthe
from the left-hand side of the equation. Tiheés currently added ta, so we need to
subtractb from both sides. This gives

a+b-b=c-b
or

a=c-b (sinceb-b=0)

Hint 2

If you want to remove an expression thasigtractedrom the term you want,
addthat expression to both sides of the equation.

To rearrang@—b = cto makea the subject, note that we need to removeliifimm
the left-hand side of the equation. Thés currently subtracted from, so we need
to addb to both sides. This gives

a-b+b=c+b
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or

a=c+b (since—-b+b=0)

Hint 3

If the term you want isnultiplied by another expressiouljvide both sides of
the equation by that expression.

To rearrangeb = ¢ to makea the subject, note that we need to removelHem
the left-hand side of the equation. Taés currently multiplied byb, so we need to
divide both sides of the equation by This gives

ab_c
b b
Theb in the numerator of the fraction on the left-hand side cancels witbh thehe

denominator to give

a= S
b
Hint 4

If the term you want isdivided by another expressiomultiply both sides of
the equation by that expression.
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To rearrang 2 c to makea the subject, note that we need to removelitieom
the left-hand side of the equation. Thas currently divided byb, so we need to
multiply both sides of the equation liy This gives

%):cxb

Theb in the numerator of the fraction on the left-hand side cancels witb thehe
denominator to give

a=cb

Hint 5

If you are trying to make a term the subject of an equation and you currently
have an equation for trequareof that term, take thequare rootof both sides
of the equation.

To rearrange@? = b to makea the subject, note that theis currently squared, and
take the square root of both sides of the equation. This gives

a=+Vb

Note the presence of thesign, indicating that the answer could be either positive
or negative, as discussed$ection 1.1.3In practice, the reality of the problem we
are solving sometimes allows us to rule out one of the two values.

Back <« >

159



Contents O

Hint 6

If you are trying to make a term the subject of an equation and you currently
have an equation for thequare rootof that term,squareboth sides of the
equation.

To rearrangeya = b to makea the subject, note that you currently have an equation
for the square root ad, and square both sides of the equation. This gives

a=b?

Hints 1 to 6 all follow from a general principle:

To ‘undo’ an operation (e.gt, —, X, +, square, square root) you should do the
opposite, (i.e—, +, +, X, square root, square).

The following worked examples use the principles introduced in the numbered hints
above, in the context of equations which are frequently encountered in science.
Worked example 4.1 also involves substituting numerical values and units into the
equation once it has been rearranged.
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Worked example 4.1

As discussed iBox 2.1, mass and weight are not the same. However, the mag-
nitude of the weightV, of an object at the surface of the Earth and its mass,
m, are related by the equati® = mg The magnitude of the acceleration due
to gravity,g, can be taken as®. ms?

A teenager’s weight is 649 N. What is his mass?
Answer

We need to start by rearrangillg = mgto makemthe subject of the equation
It is helpful to start by reversing the order of the equation, i.e. to write it as

mg=W

To isolatemwe need to get rid of, andmis currentlymultipliedby g so, from
Hint 3 we need talivideby g. Remember that we must do thiskioth sides of
the equationso we have

mg_ W
g g

Theg in the numerator of the fraction on the left-hand side cancels witlg the
in the denominator to give
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W
m=—
g

Substituting values fow andg gives

_ 649N
"~ 9.81 ms?2

Since 1 N= 1 kg m s (from Table 3.2 and

N _ kgpms?
ms2 myz

we then have

_ 649 kgms?

98ims2 ~ 002kg

So the teenager’s mass is.Bkg
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Worked example 4.2

The timeT for one swing of a pendulum is related to its length,by the
equation
AL

g

whereg is the magnitude of the acceleration due to gravity. Write down|an
equation forT.

T2

Answer

T is currently squared, so froiint 5, we need to take the square root of both
sides of the equation. This gives

o 42
g

SinceT is a period of time, its value must be positive, so we only need to write
down the positive square root.
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Question 4.1
(a) Rearranger = fA to makef the subject. Answer
(b) Rearrangdc: = Ex + Ep so thatE is the subject. Answer
m . .
(c) Rearrange = v to obtain an equation fan. Answer
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When rearranging more complicated equations, it is often necessary to proceed in
several steps. Each step will use the rules already discussed, but many people are
perplexed when trying to decide which step to take first. Expertise in this area
comes largely with practice, and there are no hard and fast rules (it is often possible
to rearrange an equation by several, equally correct, routes). However, the following
guidelines may help:

Hint 7
Don't be afraid of using several small steps to rearrange one equation.
Hint 8

Aim to get the new subject into position on the left-hand side as soon as|you
can. (This will not always be possible straight away.) Simply reversing|an
eguation can sometimes be a helpful initial step.

Hint 9

You can treat an expression within brackets as if it was a single term. This
is true whether the brackets are shown explicitly in the original equation or
whether you have added them (or imagined them) for clarity. If the quantity
required as the subject is itself part of an expression in brackets in the original
equation, itis often best to start by making the whole bracketed term the supject
of the equation.
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Let’s look at these guidelines in the context of a series of worked examples, inter-
spersed with questions for you to try for yourself. Note that although ‘real’ science
equations have been used as much as possible in the worked examples and questions,
the symbols have not been explained, and you do not need to know the meaning of
them. This is to allow you to concentratey the time being onlyon the algebra

rather than getting side-tracked into the underlying science.

You may be able to rearrange the equations in the following worked examples in
fewer steps than are shown, but if you are in any doubt at all it is best to write down
all the intermediate steps in the process.
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Worked example 4.3
Rearrangé®V = nRT to give an equation for .
Answer

This example is perhaps more straightforward than it looks, but it is best to
proceed in steps.

The first step is to reverse the equation so thatTths on the left-hand side
(from Hint 8). This gives

nRT = PV

We now need to remove theR by which theT is multiplied. Dividing both
sides bynRgives

nRT ﬂ/

nR  nR

ThenRin the numerator of the fraction on the left-hand side cancels with the

nRin the denominator to give
PV
T=—
nR
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Worked example 4.4
Rearrange = g so thatV is the subject.

Answer

The first step is to multiply both sides By (thus gettingV into the right posi-
tion, as inHint 8). This gives

_mV
SV

oV
that is
oV =m
Then dividing both sides by gives
N _m
p P
that is

m
V=—
Jol
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Worked example 4.5

Rearrangey = Uy + axt to makeuy the subject.
Answer

This equation can be written as

UX + axt = VX

which hasuy on the left-hand sideHint 8).

We can treat the expressi@gt as a single term (by considering there to be
brackets around it, as idint 9) and subtract it from both sides of the equatign
to give

UX + axt - axt = VX - a.xt
that is

UX = VX - axt
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Worked example 4.6
Rearrangd = %gt2 to give an equation far.
Answer

We can consider there to be brackets aroufidand start by finding an exprest
sion fort? (Hint 9). The equation can be written as

1 2 _
Egt—h

which hagt? on the left-hand sideHint 8). Multiplying both sides by 2 gives

% %gtz =2h
that is
gt? = 2h
Dividing both sides by gives
g g
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that is

Now we can take the square root of both sides to give

N
=
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Worked example 4.7
Rearrangess = \/g so thatu is the subject.
Answer

We can consider there to be brackets aro(lfﬁ)jand start by finding an exprest
el

sion for(ﬁ) (Hint 9).
P

The equation can be written 5\7@ = Vs, Which hast on the left-hand side
P P
(Hint 8).

Squaring both sides gives

Now we can multiply both sides ly, to givey = V3p .
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Box 4.1 Interlude: why bother with algebra?

You may have recognized the equation rearrange®/onked example 4,7t
was the one discussed at the beginning of the chapter. Thinking back to the
beginning of the chapter reminds us of the purpose of what we are doing.| The
ability to rearrange equations is useful (arguably the most useful skill deyvel-
oped in this course), but it's not something that you should do just for the
sake of doing so, but rather because you want to work something out, and re-
arranging an equation is the means to this end. Suppose you have beep told
that S waves pass through rocks of denpity 3.9 x 10° kg m~2 with a speed
Vs = 3.0 x 10® ms1, and you want to find the rigidity modulus The equation

in the formvg = \/E is not much use, but the rearranged form immediately
P
tells us that
p=\ip

~ (30x10* ms™)* x (39 x 10* kgm )
=35x1019m?s2kgm3
=35x10°kgmts2

So the rigidity modulus is.3 x 1019 kgmts2.
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Question 4.2
(a) Rearrangd = c — d + e so thate is the subject. Answer
(b) Rearrange = pghto give an equation fan. Answer
2GM .
(c) Rearrange,. = R to makeR the subject. Answer
(d) Rearrangés = hf — ¢ so thaty is the subject. Answer
b .
(e) Rearrange = o to give an equation foc. Answer
b .
(f) Rearranga = \/g to makeb the subject. Answer
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Question 4.3

The massm, speedy, and kinetic energykg, of an object are linked by the
equationEy = 3mv.

(a) Rearrange this equation so thas the subject. Answer

(b) Use your answer to part (a) to estimate (inTh® one signif-  Answer
icant figure) the speed needed in order for a tectonic plate of
mass 4x 107 kg to have a kinetic energy of210° J.

(c) Use your answer to part (a) to estimate (inTh® one signif-  Answer
icant figure) the speed needed in order for an athlete of mass
70 kg to have the same kinetic energy as the tectonic plate in
part (b).

The final group of worked examples in this section involve equations which may
appear rather more complex than the previous ones, but they can all be rearranged
using the rules and guidelines already introduced. SomeWike&ed example 4,8
appear more complex partly because they use symbols that are rather unwieldy.
However, these final worked examples are genuinely more complicated too, and are
best solved by taking a logical stepwise approach (as the early Arab mathematicians
did; seeBox 4.2. Rearranging complicated equations is rather like peeling away
layers of an onion, systematically removing layer by layer in order to get to the part
you want. But that doesn’t mean it should end in tears!
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Box 4.2 Al-Khwarizmi and al-jabr

The techniques of algebra have developed over a period of several thousand
years, but the word ‘algebra’ comes from ‘al-jabr’ in the title of a book wrjt-
ten by Mohammed ibn-Musa al-Khwarizmi in about 830. The book, whose
title Hisab al-jabr w’al mugabelacan be translated as ‘Transposition and re-
duction’, explained how it was possible to reduce any problem to one of|six

standard forms using the two processes, al-jabr (transferring terms to elimjnate
negative quantities) and mugabela (balancing the remaining positive quanti-
ties).

Arab mathematicians like al-Khwarizmi did not use symbols in their work, but
rather explained everything in words. Nevertheless, their stepwise apprpach
was very similar to the one advocated in this course. Al-Khwarizmi is also
remembered for his work on the solution of quadratic equations, discussed|later
in this chapter.

A little less working is shown in Worked examples 4.8, 4.9 and 4.10 than previously,
and hints are not explicitly referred to. This has been done so as to make the working
more akin to what you might reasonably write when working through the questions
in this course. You are encouraged to show as many steps as necessary in your
working, and to use words of explanation wherever they help you.

Back < > 176



Contents O

Worked example 4.8

Rearrang\G$, = AHS, — TASS, so thatAS, is the subject.

(Note: AG§,, AHS, andAS§, each represent a single physical entity.)
Answer

Adding TASS, to both sides of the equation gives
AGS, + TASS, = AHS

SubtractingAG§;, from both sides gives
TASS, = AHS, - AGS,

Dividing both sides by’ gives

AHE, - AGS,

ASS =
m T
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Worked example 4.9
Rearranges, = uyt + 3axt? to makeay the subject.
Answer
The equation can be written agt + %axt2 = S,.
Subtractinguyt from both sides gives
La,t? = 5 Uyt
Multiplying both sides by 2 gives
axt? = 2(Syx — Uxt)
Dividing both sides by? gives

_ 2(Sx — Uxt)

Ay 2
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Worked example 4.10

m , .
Rearrangd-g = G :;nz to give an equation far.
Answer
m : G .
Note thatFq = G :;nz can be written afg = % (seeSection 3.5.3

We can get the? into position on the left-hand side by multiplying both sides
by r2. This gives

Fgr? = Gmump
Dividing both sides by-4 gives

B Gmmy
Fg

Taking the square root of both sides gives

Gmmp
Fg

r==+
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Box 4.3 Using algebra in astronomy

The luminosity of a star (the total rate at which it radiates energy into space, in
all directions),L, is related to its radiusy, and the temperature (measured |n
kelvin), T, of its outer layer (called the photosphere) by the equation

L = 4nRPo T4 (4.1)

whereo (the lower case Greek letter sigma) represents a constant known as
Stefan’s constant, with the valwe= 5.67 x 108 Wm=—2K=4,

It is impossible to take direct readings for the luminosity, radius or temperature
of distant stars, but indirect measurements can lead to values for photospgheric
temperature and luminosit{zigure 4.2is a so-called Hertzsprung—Russell d
agram, comparing the photospheric temperatures and luminosityfefedit
stars. Note that dlierent types of stars appear in distinct groupings on the
Hertzsprung—Russell diagram.

If we know a star’s luminosity and photospheric temperature we can find its
radius from Equation 4.1, but first of all we need to rearrange the equation to
makeR the subject.
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Equation 4.1 can be reversed to give

ArRoT = L

Dividing both sides by # o T# gives

L
40T
(Note that the same results would have been achieved by dividing by,
andT* separately.)

Taking the square root of both sides gives

L
4o T4

SinceRis the radius of a star, we are only interested in the positive value.

R=+

The star Alcyone (in the Pleiades) has a photospheric temperature of
1.2 x 10* K and a luminosity of 2 x 10?° W. So its radius is

o 3.2x 1029 W
4% 567108 Wm-2K-4x (1.2 x 104 K)*
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e \/ 3.2 x 1029 W
4x5.67x 108 Wm-2K4 (1.2 x 104)* k¥
= V2.17x 1019 m2
=47x10°m

The radius of Alcyone is Z x 10° m.

Notice that in this example, the units of watts cancelled without having tg be
expressed in Sl base units.

Question 4.4
(a) Rearrangey = uy + axt so thatay is the subject. Answer
(b) Rearrangers = \/E to makep the subject. Answer
P
L . .
(c) Rearrangd- = —— to give an equation fod. Answer

A7t d?
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4.2 Simplifying equations
Sometimes it is possible (and helpful) to write an algebraic expression ifeaeatit
form from the one in which it is originally presented. Whenever possible you should
aim to write equations in their simplest form, i.e. dimplify them. For example,
. L , . a 3a L a

you will see in this section that the equatios — + I can be simplified te = t_);
the latter form of the equation is rather more useful than the former.
In order to simplify equations it is often necessary to apply the rules for the manip-
ulation of fractions and brackets that were introduced in Chapter 1.
4.2.1 Simplifying algebraic fractions
Algebraic fractions can be multiplied and divided in exactly the same way as nu-
merical fractions, using the methods introduce&ection 1.2.4ndSection 1.2.5
So just as

g>< 4.2x4_8 (multiplying numerators and denominators together)

3°573x5 15 Pying J
we can write

a c_axc_ac

b d bx bd
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Similarly, just as

2 5 2 7 . 5 . o
37753 X 3 (turning the? upside down and multiplying)
2x7

"~ 3x5
_14

~ 15
we can write

= gx d (turning theg

axd

- bxc
ad

bc

upside down and multiplying)

[eR N o]

a
b

Back < > 184



Contents O

Worked example 4.11 illustrates a division in which several of the terms cancel.

Worked example 4.11

Simplify %) + %

Answer

Turning the% upside down and multiplying gives

2ab 2 2ab_c

c ¢ ¢ 2

We can cancel the ‘2’s and the's to give

Z;ab+g:21bxgzab

c ¢ ¢ 2
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The method described iBection 1.2.Zor adding and subtracting numerical frac-
tions can also be extended to algebraic fractions. We need to find a common de-
nominator in a similar way, so, much as we can write

2 4 2><5 4x3 10 12 10+12 22

3"573x5 5x3 15 15 15 15
where the common denominator is the product of the denominators of the original
fractions, we can also write

a ¢ ad cb ad+ch

b"d bd db_ bd

Worked example 4.12

Electrical resistors can be combined together in various ways. You don't need
to know or understand the scientific details, but when three resistors of resis-
tanceR:, R» andR3 are combined in a particular way (‘in parallel’) thifextive
resistance is given by the terRag in the equation

1 1 N 1 N 1
Rt Ri R Rs
Rearrange Equation 4.2 to maRg; the subject.

(4.2)

Answer

We need to start by expressing the right-hand side of Equation 4.2 as a single
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can write

1 1 1.1
Rt R R R3
_ RoR3 N RiR3 N RiRy
RiRR3  RiRR3  RiR:R3
_ RR3+RiRs + RiRy
- R1R2R3

. . 1
In order to makdRe; the subject of the equation, rather trﬁg, we could mul-

tiply and divide both sides of the equations by a series of expressions. How
it is more straightforward simply to turn the equation upside down, i.e. to t
the reciprocal of both sides. This gives

Ri1RoRs3
R2R3 + R1R3 + R1R2

REf‘f:

fraction. The product oR;, R, andR3 will be a common denominator, so we

ever,
ake

A note of caution when simplifying algebraic expressions

When you simplify an algebraic expression, especially one involving fractions, the
answer you arrive at doesn’t always look very simple! If you are asked to simplify
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an expression which is the sum or product of two separate fractions, your answer
should normally be ainglefraction, but an expression like

RiRoR3
RoRs + RiRs + RiR

(the answer to Worked example 4.12) may be the simplest you can give. It can be
very tempting to ‘cancel’ terms incorrectly in an attempt to get to the sort of simple
fraction which is generally achievable when simplifying numerical fractions, but
less likely to be achievable when dealing with symbols.

Reﬂ::

Question

2cya (b+2)
Express X
P a+2) ™ 2cvb

as a single fraction of the simplest possible form.

Answer

We can cancel the &s to give
2¢+/a o (b+2) +a(+2)
(@+2) 2¢vb (a+2)vb

_ va(b+2)
- Vb (a+2)

It can be tempting to ‘cancel’ the square roots and #&s too, but this would
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O
be incorrect:
ﬁié and (b+2)¢—
Vb Db @+2) a

As discussed irbection 1.2.3a fraction is unchanged by the multiplicatio

or the division of both its numerator and denominator by the same amo
However,all other operations will alter its value

So \/é EZ +2) Is as far as it is possible to simplif‘z'C\/gl X (b+2)

-

unt.

+2) (’a+ 2)" 2cvb’
Note however thal\/a is equivalent to£ o) \/5 can also be written
as \/§ (b+2)
b(@+2)
Back
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Question 4.5

L
@) 27[>< d

a»%/z

2b 3c
© <y

2ab 2ac
@ =%

1 1
() f of+1

2b?

(f)

2c?

b+0  (@+o

Simplify the following expressions, giving each answer as a single fraction.

Answer

Answer

Answer

Answer

Answer

Answer
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image

lens of ok;ject
i on film
u "

<

T

Figure 4.3: The object and image of a simple camera.

Question 4.6 Answer

The distancey, of an object from a lens (such as the lens in the simple camera
illustrated in Figure 4.3) is related to the distangdrom the lens to the image
of the object (on the film) and the lens’s focal lengthby the equation
1 1 1
— 4+ = = =
u v f
Add the fractions 1u and /v and hence rearrange the equation to give jan
expression forf.
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4.2.2 Using brackets in algebra
You should be familiar by now with the notion that an operation applied to an ex-
pression in a bracket must be applieceteerythingwithin the bracket, so
(2b)? = 22b? = 4b?
(a+2b)-(a+b)=a+2b-a-b=>b
(@a+2b)—(a-b)=a+2b-a-(-b)=a+2b-a+b=3b
2@+2b)=(2xa)+(2x2b) =2a+4b
and
2a(a+ 2b) = (2ax a) + (2ax 2b) = 2a® + 4ab
If we need to multiply two bracketed expressions, suclaa®) and €+d) together,
we need to multiplyeachterm in the first bracket bgachterm in the second bracket
as indicated by the red lines shown below.
g
X/
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Multiplying the terms in order gives

@
@ © @ @
(a@):ac+ad+bc+bd
@

Worked example 4.13

Rewrite the following expressions so that the brackets are removed:
(@) (x—3)(x+5)

(b) (x+y)(x-vy)

(©) (x+y)?

(d) (x-y)?

Answer

(@) (x@) =x2+5x-3x-15

=x2+2x-15

(b) (X@) :xz—xy+yx—y2

=x2-y2 since xy =yx, so—xy+yx=0
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@ (#= (o o
:x2+xy+yx+y2

= x2 + 2xy +y?

@ (x-y7 = <x@)

2

=x’-xy-yx+y’

=x2-2xy+y?

An examination of the answers to parts (b), (c) and (d) of Worked example 4.13
serves as a reminder of the fact that

(X+Y)? # X2 +y?
(X—y)? # X2 —y?

In other words, remember to watch out for brackets!
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Question 4.7
Rewrite the following expressions so that the brackets are removed:

1
(@) > (vx + Uyt Answer
(b) (@-b) ; @-9 Answer
(c) (k-2)k-3) Answer
(d) (t-2) Answer

So far, this section has discussed removing brackets from expressions, but it can
very often be useful to do the reverse.

The numbers 6 and 4 are describedaadorsof 24 and in general, when speaking
mathematically, ‘factors’ are terms which when multiplied together give the original
expression. Since, for example,

y(y+3)=y*+3y

we can say that and {/ + 3) are factors of? + 3y
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Similarly, since

x+3)(x-D=x2-x+3x-3
Rl

=x2 +2x -3

we can say that(+ 3) and & — 1) are factors ok? + 2x — 3.

The verb ‘tofactorizé means to find the factors of an expression. If you are asked
to factorizey? + 3y then you should write

Y +3y = y(y +3)
and if you are asked to factoriz + 2x — 3 you should write

X2+ 2x—3=(x+3)(x-1)
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Note, fromWorked example 4.13that the factors of? — y? are +Y) and x—),
le.

X =y = (X +Y)(x~Y) (4.3)

The diference of two squared numbers can always be written as the product of
their sum and their dierence.

Question 4.8
Factorize the following expressions:

(@) y? -y Answer

(b) x> — 25 (Hint: you may find it helpful to compare this ex- Answer
pression with Equation 4.3, remembering that525.)

Factorizing can be useful when rearranging equations, as Worked example 4.14 il-
lustrates.
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Worked example 4.14

Rearrange) = mc AT + mL so thatmis the subject.

Answer

Both terms on the right-hand side of this equation inclogieo we can rewrite
the equation as

g=m(CAT +1L)
This can be reversed to give
Mm(CAT +L)=q
Now we divide both sides byc(AT + L) to give

q
m= ————
CAT +L

Question 4.9 Answer

Rearrangé=ot = %mv2 + mgAh to give an equation fam.
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An ability to factorize expressions suchys+ 3y andx? + 2x — 3 can also help us
to find the solutions of equations suchyds- 3y = 0 andx? + 2x— 3 = 0. Equations
of this form are known agfuadratic equations

We know from above that

Y +3y=y(y+3) (4.4)

Soify?+ 3y = 0, it follows thaty (y+ 3) = 0 too. Multiplying by zero gives zero (as
discussed irbection 1.1.% Soy (y + 3) = 0 implies that eithey = 0 ory + 3 = 0.

y + 3 = 0 implies thaty = -3, so the solutions of? + 3y = 0 arey = 0 andy = —3.

We can check that = 0 andy = -3 really are solutions of the equatigh+ 3y = 0,
by substituting each value fgrinto the left-hand side of the equation and verifying
that it gives 0, as expected.

Fory=0,y°+ 3y =0+ 0= 0, as expected.
Fory = -3,y? + 3y = (-3)% + (3 X (—3)) =9+ (-9) = 0, as expected.

It is sensible to check your answers in this way:

You should check your answers whenever possible.
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Worked example 4.15
Use the fact that

X2+ 2x—3 = (x+3)(x— 1) (4.5)
to find the solutions of the equatio® + 2x — 3 = 0.
Answer
If X2+ 2x — 3 = 0 then, from Equation 4.5x(+ 3)(x—1) = 0
Thusx+3=00rx—-1=0,i.e.x=-30orx=1.

Checking forx = -3:
X2+ 2x—3=(-3)?+2(-3)-3=9-6-3 =0, as expected.
Checking forx = 1:

X2 +2x-3=12+(2x1)-3=1+2-3=0, as expected.

So the solutions of the equatiod + 2x — 3 = 0 arex = -3 andx = 1.
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Using factorization to solve quadratic equations relies on us being able to spot the
factors of an expression; this is quite easy for expressions/fike3y (seeEqua-

tion 4.4, but if we had not known or been told thet + 2x — 3 = (x + 3)(x — 1)
(Equation 4.5, finding the factors ok? + 2x— 3 would have been largely a matter of
trial and error. An ability to find factors in this way can be developed with practice,
but it remains somewhat tedious and this method for solving quadratic equations
doesn’t work at all unless the solutions are whole numbers or simple fractions. For-
tunately help is at hand in the form of theuadratic equation formuladescribed

in Box 4.4.

Box 4.4 The quadratic equation formula

Al-Khwarizmi and other early Arab mathematicians developed general meth-
ods for solving quadratic equations. A quadratic equation of the form

ax +bx+c=0

will have solutions given by the quadratic equation formula

« = —b+ Vb2 - 4ac
B 2a

If b% > 4ac (i.e. b? is greater thandc) thenb? — 4ac will be positive, and the
formula will lead to two distinct solutions.
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If b?=4ac then b’—4ac=0, so the two solutions will be identica
(x = —b/(24)).

If b? < 4ac (i.e. b? is less than 4c) thenb? — 4acwill be negative. This means
that the solutions will include the square root of a negative number. and hence
will involve ‘imaginary numbersSuch numbers were mentioned@mapter 1
but will not be considered further iaths for Science

Worked example 4.16 demonstrates the use of the quadratic equation formula in
solving the equation that was solved by factorization in Worked example 4.15.

Worked example 4.16

Use the quadratic equation formula to find the solutions of the equation
x2+2x-3=0.

Answer

Comparison of
X2 +2x-3=0
and

ax +bx+c=0
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shows thak = 1,b = 2 andc = —3 on this occasion, so the solutions are

_ —b+ Vb2 - 4ac

X= 2a

-2+ \/22 - (4>< 1x (—3))

2x1
-2+ \4-(-12)

2

-2+ V16
2
_—2+4

2

-2+4
Sox = = il
0X >

224
IX= —— = —
or X > 3

The solutions can be checked in exactly the same way as in Worked exa

4.15.

Once again, we have found that the solutions of the equafian2x — 3 = 0

arex = -3 andx = 1.

mple
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Question 4.10

(a) Use your answer tQuestion 4.7 (cjo solvek? -5k + 6 =0  Answer
by factorization.

(b) Use your answer tQuestion 4.7 (djo solvet?—4t+4=0by  Answer
factorization.

(c) Use the quadratic equation formula to check your answer ténswer
part (a).

(d) Use the quadratic equation formula to check your answer tdnswer
part (b).

4.3 Combining equations

Consider the equatioB = hf. This equation, first proposed by Einstein, links the
energy,E, of light to its frequencyf (his a constant known as Planck’s constant).
Suppose that you knotvand are trying to finde, but that you don’t knowf. Instead

you know the values af (speed of light) and (wavelength) in a second equation,

c = fA. It would be possible to calculate a value fbifrom the second equation
and then substitute this value in the first equation so as toHintHowever, this
approach runs the risk of numerical slips and rounding errors. It is more useful to
do the substitutiomlgebraically, in the way shown in the following example.
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Worked example 4.17

Combine the following two equations to find an equationEonot involving
f:

E =hf (4.6)
c=1fa 4.7)
Answer

Rearranging Equation 4.7 gives

I ==
A

Substituting this expression fbiinto Equation 4.6 gives

E:th:@
A A4

This mathematical technique, sometimes referred &liagnation(because a vari-
able, f on this occasion, is being eliminated), can be used in many situations, as
illustrated in the worked examples throughout this section.
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Worked example 4.18

. Mm . , . :
CombineFg = 67 andFgy = mgto give an equation far not involving Fy.
Answer

Since both equations are already given wih(the variable we are trying to
eliminate) as the subject, we can simply set the two equationSgfequal to
each other:

mg= Gr—2

We now need to rearrange to give an equatiorr fdfirst note that there is an
mon both sides of the equation, so we can divide both sides of the equatign by
mto give

M
g:Gr_Z

Multiplying both sides by? gives

gr’ =GM
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Dividing both sides by gives

g

Taking the square root of both sides gives

GM
r:i,/—
g

Question 4.11

(a) CombineEy = %m\/2 andp = mvto give an equation foEx ~ Answer
not involvingv.
(b) CombineE = %mv2 andE = mgAh to give an equation fov.  Answer
not involving E.
(c) CombineEy = hf —¢ andc = fA to give an equation fap not ~ Answer
involving f.
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Two (or more) diferent equations containing the same two (or more) unknown quan-
tities are called simultaneous equationg the equations must be satisfied (hold
true) simultaneously. It is usually possible to solve two simultaneous equations by
using one equation to eliminate one of the unknown quantities from the second equa-
tion, in an extension of the method discussed above. This is illustrated in Worked
example 4.19.

Worked example 4.19

Find values ofx andy which satisfy both of the equations given below:

X+y=7 (4.8)
2X-y=2 4.9
Answer

If we rewrite Equation 4.8 to give an equation foin terms ofx, then we can
insert this result into Equation 4.9 to give an equationdatone.

Subtractingx from both sides of Equation 4.8 gives

y=7-X (4.10)
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Substituting fory in Equation 4.9 then gives

2X—(7T-x) =2
ie. 2X-7+x=2
or Xx-7=2

Adding 7 to both sides gives

3x=9,i.e.x=3
Substitution ofx = 3 into Equation 4.10 shows that
y=7-x=7-3=4

So the solution (i.e. the values farandy for which both of the equations hold
true) isx = 3 andy = 4. We can check this by substituting the valuesxand
y into the left-hand side of Equations 4.8 and 4.9.

Equation 4.8 gives+y =3+ 4 =7, as expected.
Equation 4.9 gives2-y=(2x3)—-4=6-4 = 2, as expected.

We could have arrived at the same result by using Equations 4.8 and 4.9 in a
different order, but there is only one correct answer.

Back <« > 209



Contents O

Worked example 4.19 shows that in order to find two unknown quantities, two dif-
ferent equations relating them are required. This is always true and by extension:

When you combine equations so as to find unknown quantities, it is always
necessary to have at least as many equations as there are unknown quantities.

Worked example 4.20 shows how four equations can be combined together in a case
where there are four unknown quantities (we are trying to find the total surface area,

S, but the masan, and volume), of a single particle and the number of particles,

n, are unknown too and so must be eliminated). This worked example concerns the

use of metal particles as catalysts in the chemical industry (see Box 4.5).

Box 4.5 Chemical catalysts

A catalyst is a substance which makes a chemical reaction proceed more
rapidly. The catalyst itself does not undergo permanent chemical change} and
it can be recovered when the chemical reaction is completed. Metal partjcles
can be used as catalysts. A large number of small particles will have a greater
surface area than a small number of larger particles, and the total surface|area,
S, of the particles is of critical importance to the speed of the reaction. In a
typical industrial chemical reactds, can be approximately 5000 Kiroughly
a third the area of Yorkshire!
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Worked example 4.20

The total surface are&, of n metal particles of average radiuss given by
the equation

S = 4ntnr? (4.11)

The number of particles n is linked to the mass of one partmland the total
mass of metalM by the equation

n=— (4.12)

The masan of one patrticle is linked to its volum¥ and the density of the
metalp by the equation

o= v (4.13)

The volumeV of a particle is given by

V= gn rs (4.14)

wherer is the radius.

Find an equation fo$ in terms ofM, p andr only.
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Answer

Reversingequation 4.13jives
vr

Multiplying both sides by gives
m=Vp

Substituting forV from Equation 4.14yives

4 3
M= —7r
3 P

Substituting this expression faninto Equation 4.13jives
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Substituting this expression farinto Equation 4.11ives
S = 4nnr?
3M
= 4 X x 2
Arirp
_3M
=

4.4 Putting algebra to work

So far, Chapter 4 has been concerned almost exclusively with symbols. Equations
have been given to you and you have been told to manipulate them in a particular
way. In the real scientific world, you are likely to need to:

1 Choose the correct equation(s) to use or derive equation(s) for yourself.

2 Combine, rearrange and simplify the equation(s) using the skills introduced in the
earlier sections of this chapter.

3 Substitute numerical values, taking care over things like significant figures, sci-
entific notation and units, as you did in Chapter 3.

4 Check that the answer is reasonable.
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The final section of this chapter considers these points, combining skills from Chap-
ters 3 and 4, but it starts with a more light-hearted look at the uses of algebra.

4.4.1 Algebrais fun!

Try this:

Think of a number.
Double it.

Add four.

Halve your answer.

Subtract 1.

If you have arrived at an answer of 4, | can tell you that the number you first thought
of was 3; if your answer is 6, the number you first thought of was 5, if your answer
is 11, the number you first thought of was 10, and so on.

Magic? No, a demonstration of the power of algebra! We could perform exactly the
same operations fanynumber; let’s represent the number by the synitbolrhen
we have

e Think of a number. N
e Double it. N
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e Add four. N+4
e Halve your answer. 2N +4)=N+2
e Subtract 1. N+2)-1=N+1
So the final answer will always be one more than the number you first thought of.
Here’s another one for you to try:
e Think of a number.
e Add 5.
e Double the result.
e Subtract 2.
e Divide by 2.
e Take away the number you first thought of.
Whatever number you first thought of, the answer will always be four.
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Question 4.12 Answer

be four, whatever number you choose at the beginning.

Use a symbol of your choice to represent the number in the ‘think of a num
example immediately before this question and thus show that the answer

ber’
will

You may wonder why a course entitléthths for Sciencéas suddenly started dis-
cussing number tricks. There is a serious point to this, namely to illustrate how you
can get from an initial problem to a solution by using algebra. Worked example 4.21

illustrates another use of algebra.

Worked example 4.21

Chris and Jo share a birthday (but aretient ages). On their birthday this yea

Chris will be five times older than Jo. Their combined age on their birthday
year was 58. How old was Chris when Jo was born?

Answer

Let C represent Chris’s age in years on her birthday this yearJamgresent
Jo’s age in years on her birthday this year.

Since Chris will be five times older than Jo we can say

C =5J (4.15)

\r
ast
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Last year Chris’s age wa€ (- 1) and Jo’s age wasl - 1), so we can say

(C-1)+(J-1)=58
ie.C+J-2=58
C+J=60 (4.16)

Substituting forC from Equation 4.15 in Equation 4.16 gives

5J+J =60
l.e. 6] =60
J=10

Thus, from Equation 4.1%; = 5x 10 = 50.

Thus Chris will be 50 this year and Jo will be 10. But this wasn’t the question
that was asked! When Jo was born, Chris was-30, i.e. 40 years old.

You may remember questions like Worked example 4.21 from your school days.
Problems like this can seem intimidating, but they are relatively easy to solve once
you have found the equations that describe the problem. Many people struggle with
this first step — they can't find the equations to use. Look at Worked example 4.21
carefully; all that has been done in order to derive Equation 4.15 and Equation 4.16
has been to study carefully the information given in the question, and to write it
down in terms of symbols. So ‘On their birthday this year Chris will be five times
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older than Jo’ has becont@= 5J. In solving problems, it is almost always helpful
to start by writing down what you already know. Drawing a diagram to illustrate the
situation can help too; you may find this helpful in Question 4.13.

Question 4.13 Answer

Tracey is 15 cm taller than Helen, and when Helen stands on Tracey’s shoulder
she can just see over a fence 3 m tall. Assume that it is 25 cm from Tragey’s
shoulder to the top of her head and 10 cm from Helen’s eyes to the top of her
head. How tall is Helen?

4.4.2 Using algebra to solve scientific problems

In much the same way as people struggle when trying to derive equations for use
in problems like Worked example 4.21, they often hauv@dilty deciding which
formulae to use from those given in a book or on a formula sheet. Again, it can be
helpful to draw a diagram and it @wayshelpful to start by writing down what you
know and what you're trying to find. This often helps you to decide how to proceed.

Worked example 4.22 discusses the choice of appropriate formulae for use in an-
swering a particular question. It also works through the other steps you are likely to
follow when using algebra to solve scientific problems.
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Worked example 4.22

A silver sphere (density 189 gcnt3) has a radius of 3 mm. What is its
mass? Use formulae givenBox 3.4

Which equations shall we use?

We know density) and radiusr) and are trying to find massj, so we need
, : . . m . .
an equation to link these three variabléxqquation 3.9p = Vv links density

and mass, but it also includeslumewhich isn't either given or required by
the question. Fortunately help is at hand in the fornEgtiation 3.5V =

%’71 r3 which gives the volum& of a sphere of radius. We should be able to
substitute fol from Equation 3.5nto Equation 3.9 This will give an equation
involving only p, r andm, as required, and we can then rearrange it to nmake
the subject.

17

Combining and rearranging equations
Substituting forV from Equation 3.5nto Equation 3.9jives

m

4,3
cudl
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Multiplying top and botom of the fraction by 3 gives

3m

P = s

Reversing this so thahis on the left-hand side gives

3m

el

Multiplying both sides by #r3 gives
3m=4nr3p

Dividing both sides by 3 gives

m—47rr3

Substituting numerical values

Note that we have used symbols for as long as possible in this question, sg as to
avoid numerical slips and rounding errors. However, we are now almost ready
to substitute the values given forandp. First we need to convert the values
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given into consistent (preferably Sl) units:

r=25mm=25x10°3m

o0 =1049 gent3 = 1049 % 10° kg kg3 (1.049x 10* kg kg2 in scientific no-
tation), converting from g ci¥ to kg n3 in the way described iBection 3.4.4
Then

4 3
M= —7r
3 P

_ gn (25x 10° m)’ x 1.049x 10* kg kg™

= 6.9x 10* af kg™
=6.9x10%kg

Is the answer reasonable?

It is always worth spending a few minutes checking whether the answer
have arrived at is reasonable. There are three simple ways of doing this
not normally necessary to use all three methods to check one answer):

1 We can check the units of the answer. We have given units next to all
numerical values in the calculation, and the units on the right-hand sid
the equation have worked out to be kilograms, as we would expect for m

you
(it is

the
e of
ass.
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If we had made a mistake in transposing the formula for mass, and had yvrit-
tenitasm = %’71 r?p by mistake, then the units on the right-hand side would
have been rhx kg m™3 = kgm™L. These are not units expected for mass by
itself, so we would have been alerted to the fact that something was wrgng.
Checking units in this way provides a good way of checking that you have
written down or derived an equation correctly; the units on the left-hand
side of an equation should always be equal to the units on the right-hand
side. You can use this method for checking an equation even if you are not
substituting numerical values into it.

2 We can estimate the value (in the way describe8iantion 3.3, and compare
it with the answer found on a calculator. In this case
4 -3 \3 -3
m =~ §x3(3><10 m)” x 1x 10* kgm
4
= §><,’3><33><1(T9,prf3’><1><104kgm”3
~ 4% 27x 1094 kg
~ 100x 107° kg
~1x 103 kg
This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.
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3 We can look at the answer and see if it is what common sense might lead|us to
expect. Obviously this method only works when you are doing a calculation
concerning physical objects with which you are familiar, but it gives a sen-
sible check for worked examples like the one we are considering. It seems
reasonable that a silver sphere with a diameter.®téh might have a mass
of something less than a gram. If you'd arrived at an answerlok .07 kg
(by forgetting to cube the value given foryou might have thought that thig
mass (equivalent to more than 100 bags of sugar!) was rather large for jsuch
a small sphere.

Note that checking doesn't usually tell you that your answer is absolutely
correct — none of the methods described above would have spotted small
arithmetic slips — but it does frequently alert you if the answer is wrong
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Tips for using algebra to solve scientific problems

1 Start by writing down what you know and what you're trying to find, and
use this information to find appropriate equations to use.

2 Combine, rearrange and simplify the equations, using symbols for as long as
possible so as to avoid numerical slips and rounding errors.

3 When you substitute numerical values, take care with units, scientific npta-
tion and significant figures.

4 Check that your final answer is reasonable, by asking yourself the followi
guestions:

ng

(a) Are the units what you would expect?
(b) Is the answer similar to the one you have obtained by estimating?

(c) Is the answer about what you would expect from common sense?

Worked example 4.23 shows the use of these tips in solvinfjexelint problem, con-
cerning the conservation of energy. This worked example uses formulae introduced
in Box 4.6; you may also find these formulae useful when answering Question 4.14.
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Box 4.6 The conservation of energy

Energy can never be destroyed, but it is frequently converted from one form to
another. As a child climbs the steps of a slide, he or she gains in gravitatipnal
potential energy; as he or she slides down the slide this energy is converted
into kinetic (movement) energy. As a kettle boils, the electrical energy |in-
creases the energy of the water molecules and so raises the temperature| of the
water. In both cases some energy is ‘lost’ to other forms (such as heat tp the
surroundings and sound) but very often you can assume that all of the energy
initially in one form is converted to just one other form, and so equate for-
mulae (such as those given below) foffdient forms of energy. All forms
of energy should be quoted using the Sl unit of energy which is the joule|(J),
where 1 J= 1 kgn?s2.

The kinetic energy (energy of motiorgy, of an object with a mass moving
at speedis given by

Ex = smV? (4.17)

The gravitational potential energlg, of an object of masm at a heightAh
above a reference level is given by

Eg = mgAh (4.18)

whereg is the acceleration due to gravity.
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The energyg, needed to raise the temperature of a nmas¥ a substance of
specific heat capacityby a temperaturdT is given by

g = MCAT (4.19)

Worked example 4.23

A lump of putty is dropped from a height of8m. The putty’s gravitational
potential energy is all converted into kinetic energy as it falls. If, on impact, all

of this kinetic energy is used to raise the temperature of the putty, by how much
does the temperature of the putty rise? Assume that the specific heat capacity
of the putty is 50 x 107 Jkg 1 K~1 and that the acceleration due to gravity |s
9.81 ms?.

Which equations shall we use?

It is tempting to involveEquation 4.17as the question talks about the putty|s
kinetic energy, but closer inspection of the question reveals that we can assume
that all the gravitational potential energy becomes kinetic energy as the putty
falls, and that all the kinetic energy is transferred to heat energy in the putty on
impact. So we can say that all the gravitational potential energy is transferred
to heat energy; we simply need to $&fuations 4.1&nd 4.19 equal to each
other. We have not been told the mass of the putty, but since theni@ppears
in both Equation 4.18 and Equation 4.19 we will be able to cancel this tgrm,
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which will leave us with an equation linkingy Ah, c andAT. We knowg, Ah
andc and are trying to find\T.

Combining and rearranging equations

Since we can assume that all the gravitational potential enégyis trans-
ferred to heat energy, we can seEquation 4.18&ndEquation 4.1%qual to
each other.

MCAT = mgAh
There is armon both sides, so we can divide byto give
CAT =gAh

Dividing both sides by gives

a7 - 920
C

Substituting numerical values

g=9.81ms?
h=48m
c=50x10 Jkgtk1
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SO

AT = 94N
C

981 mMs2x48m

T 50x 102 Jkg LKL
_ 981x48msZ x pt
5.0 x 10% kgm? 577 kg™ ¥ K1

= 0.094 K to two significant figures.

Is the answer reasonable?

In a real question you probably wouldn’t use all the checks described in|the
blue-toned boxafter Worked example 4.22, but the answer seems about|the
size you might expect (you wouldn’t expect a big temperature rise) and|the
units have worked out to be kelvin, as expected for a change in temperature.

Alternatively we can estimate the answer to be

1 2
AT~ OMSTXOM g5k
5x 102 Jkg ~K-1

This is the same order of magnitude as the calculated value, so the calcylated
value seems reasonable.
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Question 4.14 Answer

A child climbs to the top of a B m slide and then slides to the ground. As
suming that all of her gravitational potential energy is converted into king
energy, find her speed as she reaches the ground.grak®81 ms2 and use
appropriate formulae frorBox 4.6

5-

atic

In Worked example 4.24, the final worked example in Chapter 4, we return to a dis-
cussion of seismic waves travelling through the Earth’s crust (as introdudsakin

3.1). In this example there are three unknown quantities (the distainéem the
earthquake, the timey,, taken for P waves to reach the seismometer and the time,

ts, taken for S waves to reach the seismometer) so we need to combine three equa-
tions to find any of the unknown quantities. You will not be expected to combine
more than two equations together in any questions associated with this course, but
Worked example 4.24 has been included because it summarizes much of what has
been discussed in Chapter 4, and also because it illustrates the usefulness of algebra

in science.

Box 4.7 Locating an earthquake

Figure 4.4shows a seismogram recorded at the British Geological Surve
Edinburgh on 12 September 1988. It is possible to see the points at whi
waves and S waves first reached the seismometer. We can assume tha

y in
ch P
[ these

seismic waves originated in an earthquake somewhere. But where wa

S the
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earthquake and when did it occur? (although the recording was made at

origin or focus of the earthquake).

Figure 4.4shows that the P waves reached the seismometer 20 seconds I
the S waves.

We assume that the P waves travelled with an average speed.6 kms?
and that the S waves travelled with an average speed3.4 kms? (these
values are typical for the rocks of the Earth’s crust, through which the wag
will have been travelling).

distance travelled
time taken

average speed

d
Vp = — :
SO b 4.20
b
d
and vs=— (4.21)
ts

whered is the distance from the earthquakgis the time taken for P waves tg

seismometer.

travel to the seismometer amglis the time taken for S waves to travel to thie

2.23

p.m., it does not tell us the time at which the earthquake occurred, since the
waves will have taken some time to reach the seismometer from the point of

efore

ves
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Worked example 4.24

Use the information given iBox 4.7to find the distance from Edinburgh tg
the focus of the earthquake recorded on the seismogram shdviguire 4.4

Which equations shall we use?

d : d :
We know thatv, = o (Equation 4.2pandvs = = (Equation 4.2}, where
P S

Vp = 5.6 kmstandvs = 3.4 kms?, butd, t, andts are all unknown, so we
need another equation.

Although we don’t know the travel time of the two types of wave, we know
that the dfference in the arrival time of the two waves is 20 seconds, so we|can
write

t=to—t (4.22)

wheret = 20 s.

Equations 4.20, 4.21 and 4.22 give us three equations containing the threle un-
knownsd, t, andts and we need to combine and rearrange them to givel an
expression fod.
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Combining and rearranging equations

Multiplying both sides oEquation 4.2y t, gives
tpr = d

Dividing both sides by, gives

d
tp:V—p

Similarly, from Equation 4.21

t_d
s—vS

Substituting forts andt, in Equation 4.23jives

t:ts—tp
d d

VsV

:d(i_l)
Vs Vp
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Combining the fractions by makingvsv, a common denominator
(Section 4.2.) gives

(Vp — Vs)
VsV

t=d

Reversing the equation so thais on the left-hand side gives

(Vp—Vs)
VeVp

d t

Multiplying both sides bysvp gives
Dividing both sides by\, — vs) gives

tVsVp
Vp — Vs

d=
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Substituting numerical values

Substitutingt = 20 s,vp = 5.6 km s andvs = 3.4 kms! gives

g 20sx34km s1x56kms?
(56 kmsl-34kms?)
_ 20sx34kms!tx56kms?

22 kms1t
= 1.7 x 107 km to two significant figures

nggg kmsT x kst 3
7 kms T

The units work out to be kilometres si km

Is the answer reasonable?

The units have worked out to be kilometres as expected for a distance. If we
had converted the speeds to values immsve would have obtained a value
for din metres @ = 1.7 x 10° m).

In this case it is easy to check that the answer is reasonable; many membegrs of
the public reported a small earthquake on that day in Ambleside in Cumbria.
Ambleside is 173 km from Edinburgh!

In general, to use this method to uniquely identify the location of an earthquake
you need to repeat the exercise using data received at other seismometers else-
where on the Earth’s surface.
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4.5 Learning outcomes for Chapter 4

After completing your work on this chapter you should be able to:

4.1 demonstrate understanding of the terms emboldened in the text;

4.2 rearrange an algebraic equation to makefiec@nt variable the subject;
4.3 simplify an algebraic expression;

4.4 add, subtract, multiply and divide algebraic fractions;

4.5 re-write an algebraic expression so that the brackets are removed;
4.6 factorize a simple algebraic expression;

4.7 eliminate one or more variables so as to combine equations together;

4.8 check the answer to a problem by checking units, estimating an answer, or
comparing the answer with what would be expected from common sense.
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Using Graphs

This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

axis

bar chart

best-fit line

constant of proportionality
dependent variable
directly proportional
exponential decay

exponential growth
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extrapolation
function

gradient

graph

half-life

histogram

hyperbola
independent variable
intercept
interpolation
inversely proportional
origin

parabola
proportional

sketch graph
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Angles and trigonometry

This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

acute angle
adjacent
arc
arccosine
arcsec
arcsine
arctangent

concentric
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cosine

degree

hypotenuse

inverse cosine
inverse sine

inverse tangent
inverse trigonometric function
latitude

longitude

minute

opposite

Pythagoras’ Theorem
radian

right angle
right-angled triangle

second
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similar

sine

small angle approximation
subtend

tangent

trigonometric ratios

trigonometry
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Logarithms

This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

common logarithm
exponential function
logarithm

logarithm to base 10
logarithm to base e
log-linear graph
log-log graph

natural logarithm
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Probability and descriptive statistics

This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

accurate

addition rule for probabilities

arithmetic mean

estimated standard deviation of a population
mean

median

mode

multiplication rule for probabilities
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normal distribution
population

precise

probability

random uncertainty
ratio

sample standard deviation
sample

skewed

standard deviation
systematic uncertainty

true mean
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Statistical hypothesis testing

This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

absolute value
alternative hypothesis
categorical level

Y2 test
contingency-table
correlation

correlation co#éficient

critical value
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degrees of freedom
hypothesis

interval level

level of measurement
matched samples
null hypothesis
ordinal level
significance level
Spearman rank correlation déeient (s)
statistically significant
t-test

test of association
test of diference

test statistic

unmatched samples
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Differentiation

This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

calculus

chord

derivative

derived function
differentiation
first derivative
second derivative

tangent
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Resolving vectors

component
scalar
vector

modulus
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Glossary

absolute-value The absolute value of a number is the number given without its
or — sign.

accurate Description of a set of measurements for whichgiistematic
uncertaintyis small. Compare witlprecise
acute-angle An angle of less than 90

addition rule for probabilities A rule stating that if several possible outcomes are
mutually exclusive, the probability of one or other of these outcomes
occurring is found by adding their individual probabilities.

adjacent (trigonometry) The side other than the hypotenuse which is next to a
particular angle in aight-angled triangle

algebra The process of using symbols, usually letters, to represent quantities and
the relationships between them.
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alternative hypothesis The logical ‘mirror image’ of theaull hypothesigproposed
at the start of a statistical hypothesis test (e.g. that the means of two
populations are not identicaly # u2 ).

arc A portion of a curve, particularly a portion of the circumference of a circle.
arccosine Seeinverse cosine

arcsec An abbreviation for ‘second of arc’. A 60th part oh@nuteof arci.e. a
3600th part of alegregof arc).

arcsine Seeinverse sine
arctangent Seeinverse tangent

arithmetic mean Measure of the average of a set of numbers. For a set of
measurements of a quantitythe arithmetic meaw (often abbreviated to
‘the mean) is defined as the sum of all the measurements divided by the total
number of measurements:

See also th&rue mean

arithmetic operations The operations of addition, subtraction, multiplication and
division.
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axis (of a graph) A horizontal or vertical reference line which carries a set of
divisions. In the case of laar charthe divisions may be a list of categories.
In the case of graphthe divisions indicate Anearor logarithmic scaleand
are used to locate points on the graph.

bar chart A diagrammatic method of presenting data grouped into discrete
categories. The categories are listed along one axis (usually the horizontal
axis), and each category is represented by a bar (usually vertical). The bars
are separated by gaps, and their height (or lengttiyéstly proportionato
the number or percentage of things or events in each category. Compare with
histogram

base number When usingexponentsthe quantity that is raised to a power, e.g. 5
is the base in the statemenk® x 5 = 5° anda is the base in the statement
adxat=a'.

best-fit line A line (usually a straight line) drawn ongaaphand chosen to be the
best representation of the data as a whole. A best-fit line need not necessarily
go through any of the data points (although it will typically go through some
of them), and should be drawn in such a way that there are approximately the
same number of data points above and below the line.

calculus The branch of mathematics which includ&ferentiationand
integration.

cancellation The process of dividing both the numerator and denominator of a
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fraction by the same quantity. With numbers it may be quicker to use
cancellation than to work out the value of the numerator and denominator
separately, e.qg.

5x13 5
13x8 8
Cancellation is also useful in simplifying algebraic expressions or units, e.g.

b

2ad  2d

2
1N _ 1/kg’m§ _1ms?2
1kgx 1 1kg
categorical level A level of measuremeii which the data comprise distinct

non-overlapping classes that cannot logically be ranked (e.g. presence versus
absence, male versus female). See atsinal leve| interval level

centi A prefix, used with units, to denote hundredths, and indicated by the symbol
c. Thus one centimetre, denoted 1 cm, is the hundredth part of a metre. Centi
is not one of the recognized submultiples in the syste@lamits but is
nevertheless in common use, especially in association with units of length
and volume.

Y2 test (chi-squared test) A statistical hypothesis test used to determine whether
there is sstatistically significanassociation between twaategorical level
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variables.
chord A line drawn between two points on a curve.

common denominator The same number or term occurring as demominatoof
two or more fractions. For example, the numerical fracti§é1andl—76 have
the common denominator 16. It is often necessary tcegsevalent fractions
in order to find common denominators: for examgle= & = 22 ) and & (
= %—8) have common denominators 15 and 30 (as well as many other

numbers). The algebraic fractiofsand§ have the common denominator
bx d.

common logarithm Seelogarithm to base 10

commutative An operation for which the result is unchanged if the order of terms
is reversed is described as commutative. Only two ogttitametic
operationsaare commutative: additiora(+ b = b + a) and multiplication
(axb=bxa).

complex number A number of the forrm + mi, wheren is anyreal numbermis
any non-zero real number, ang v-1.

component (of a vector) The component ofi@ctoralong a chosenxisis
obtained by drawing a line from the head of the arrow representing the vector
onto the axis, such that the line meets the axisriiglat angle For example,
the x-component of a vecta is ax = acosd wherea is the magnitude of the
vector and) is the angle between theaxis and the direction of the vector.
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concentric Two circles are described as being concentric if they have the same
centre.

constant of proportionality The constantactorthat is required to turn a
proportionality into arequation Thedirect proportionalityof y o« x can be
written asy = kx, wherek is the constant of proportionality.

contingency table A table drawn up as part of & testin which ‘observed’ ;)
and ‘expected’ ;) numbers are compared. Contingency tables may be
Gi - E)
Ei
conversion factor The number by which one needs to divide or multiply in order
to convert from one unit to another.

extended by inclusion of columns fo®(- E;), (O; — Ej)? and~————

correlation Two variables abrdinal levelor interval levelare said to be correlated
if, as the value of one variable increases, the value of the second variable
either increases (i.e. positive correlation) or decreases (i.e. negative
correlation). If the values of the two variables increase precisely in step with
one another, the positive correlation can be described as ‘perfect’. In a
‘perfect’ negative correlation, the value of one variable decreases precisely as
the other increases. Correlations may or may natthgstically significant

correlation codficient The correlation co@cient () of a ‘perfect’ positive
correlationis +1, while that of a ‘perfect’ negative correlation44.. When
there is complete lack of correlation between two varialslesQ. For a
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positive correlation that is less than ‘perfect’>T > 0. For a negative
correlation that is less than ‘perfect’ >0r > —1.

cosine The cosine of an angkin aright-angled trianglés defined by

adj
coSd = jacent
hypotenuse

where adjacerntis the length of the side adjacent@and ‘hypotenuseis
the length of the hypotenuse.

critical value At a particular number afiegrees of freedorfin many statistical
hypothesis tests), the critical value is the most extreme (usually the largest,

but in some statistical tests the smallest) value thatakiestatistidgs
expected to have for a particular significance level.

deci Prefix, used with units, to denote tenths, and indicated by the symbol d. Thus
one decibel, denoted 1 dB, is equal to one tenth of a bel. Deci is not one of
the recognized submultiples in the systensotinits but is commonly used
in certain areas: for example the concentration of a chemical dissolved in a
solvent is often expressed in units of moles per decimetre cubed (mMd)dm

decimal notation Method of representing numbers, according to which the
integraland fractional parts of a number are separated by a decimal point.
The decimal point is written as a full stop, with the integral part of the
number to the left of it. The first digit after the decimal point indicates the
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number of tenths, the second indicates the number of hundredths, the third
the number of thousandths, etc.

decimal places Seeplaces of decimals
degree (of arc) A 360th of a complete revolution.

degree-CelsiusAn everyday unit of temperature, given the symt©l Pure water
freezes at 0C and boils at 100C. Temperatures may be converted from
degrees Celsius to ti#& unit of temperature, kelvin, using thveord equation
(temperature in kelviny (temperature in degrees Celsius27315

degrees of freedomA device used in many statistical hypothesis tests to allow for
the fact that the more data that are collected, the more scope there is for the
test statistido deviate from the value expected (generally, zero) ifrthié
hypothesisvere true.

denominator The number or term on the bottom of a fraction. For example, in the

) 1 ) ) . . mn . .
fractlonzt, the denominator is72 in the fractlonﬁ, the denominator is

pg. See alsonumerator

dependent variable A quantity whose value is determined by the value of one or
more other variables. Ongaaph the dependent variable is, by convention,
plotted along the verticalxis Compare withindependent variable

derivative The derivative (or derived function) offanction f(x) with respect tox
is another function ok that is equal to the rate of changefdk) with respect
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. . AT -
to x. Its value at any given value ofis equal to the ratleA—X in the limit as
. .. df
Ax becomes very small, and is usually erttenaaxsor f’(x). The value of

f . .
d— at each value ox is also equal to the gradient of the graphfgflotted

X
againstx at that value ok. A derivative of the type is sometimes called the
first derivative to distinguish it from the second derivative of the function.

derived function Seederivative

differentiation A mathematical process that enablesdeevativeof afunctionto
be determined.

directly proportional (quantities) Two quantities andy are said to be directly
proportional to each other if multiplying (or dividing)by a certain amount
automatically results iy being multiplied (or divided) by the same amount.
Direct proportionality betweer andy is indicated by writingy < X. The
direct proportionality can also be written as an equation of fpeakx,
wherek is a constant called theonstant of proportionalityA graphin which
y is plotted againsk will be a straight line withgradientequal tok. See also
inversely proportional

elimination A method of combining two or morequationsdy eliminating
variablesthat are common to them.

equation An expression containing an equals sign. What is written on one side of
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the equation must always be equal to what is written on the other side.

equivalent fractions Fractions that have the same value, &g, S, 23, etc.

estimated standard deviation of a population The best estimate that can be
made for thestandard deviationof some quantity for a wholpopulation
This estimate is usually set equaldo 1, which is calculated from
measurements of the quantity made on an unbiaaetpbledrawn from the
population. If the sample consistsmmembers and the quantikyis
measured once for each member, then

Sv1= Jrllg(x. - %)2

whereX is thearithmetic meamf the measurements. The symbgl 1 is
also widely used (especially on calculators) as an equivalest {0

evaluate An instruction to work out the value of an expression.

exponent When raising quantities to powers, the number to which a quantity is
raised, e.g. in the term?2the exponent is 3.

exponential decayDecay in which the time taken for a quantity to fall to half its
original value is always the same; this time is known ashhélife. A
quantityN with an initial value ofNg at timet = O decays exponentially if
N = Noe~, whereA is a constant known as the decay constant.
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exponential function A functionof the typey = Cé* whereC andk are
constants. A function of this type has the property t(%{(iis proportional to
y.

exponential growth Growth in which the quantity being measured increases by a
constant factor in any given time interval. A quantityith a starting value
of ng at timet = 0 grows exponentially if = nge?!, wherea is a positive
constant.

expression A combination of variables (such agt or uy + axt). Unlike an
equation an expression is unlikely to contain an equals sign.

extrapolation The process of extending a graph beyond the highest or lowest data
points in order to find the values of one or both of the plotted quantities
outside the original range within which data were obtained.

factor A termwhich when multiplied to other terms results in the original
expressionso 6 and 4 are factors of 24 aral{ 3) and @ + 5) are factors of
a® +2a— 15.

factorize To find thefactorsof anexpression
first derivative Seederivative
formula A rule expressed in algebraic symbols.

fraction A number expressed in the form of omeegerdivided by another, e.g.

Back <« > 258



Contents O

1321 . . :
Z; é; 13 One algebraitermdivided by another may also be described as a
fraction. See alsamproper fractionmixed numberequivalent fractions
numeratomanddenominatar

function If the value of avariablef depends on the value of another variakle
thenf is said to be a function of and is written ad (x). In general, there is
only one value off (x) for each value ok.

gradient (of a graph) The slope of a line orgaaph The gradient is a measure of
how rapidly the quantity plotted on the verticatischanges in response to a
change in the quantity plotted on the horizontal axis. If the graph is a straight
line, then the gradient is the same at all points on the line and may be
calculated by dividing the vertical ‘rise’ between any two points on the line
by the horizontal ‘run’ between the same two points. If the graph is a curved
line, the gradient at any point on the curve is defined by the gradient of the
tangento the curve at that point. See alsterivative

graph A method of illustrating the relationship between two variable quantities by
plotting the measured values of one of the quantities usiigearor
logarithmic scalelong a horizontahxis and the measured values of the
other quantity using a linear or logarithmic scale along a vertical axis. See
also:dependent variabJéndependent variab)esketch graph

half-life The time taken for half the nuclei in a radioactive sample to decay. See
alsoexponential decay

Back <« > 259



Contents O

histogram A diagrammatic method of presenting data, in which the horizontal
axisis divided into (usually equal) intervals of a continuously variable
guantity. Rectangles of width equal to the interval have a height scaled to
show the value of the quantity plotted on the vertical axis that applies at the
particular interval. For example, the intervals could be the months in the year
and the vertical axis could represent thean(monthly) rainfall in
millimetres. Compare withar chart

hyperbola A curve, part of which may be obtained by plottimyersely
proportionalquantities against each other on a

hypotenuse The side opposite to theght-anglein aright-angled triangle

hypothesis A plausible idea tentatively put forward to explain an observation.
Traditionally, a hypothesis is tested by making predictions that would follow
if the hypothesis is correct. If these predictions are borne out by experiment
or further observation, then this lends weight to the hypothasisloes not
prove it to be correctlf the predictions are not borne out, then the
hypothesis is either rejected or modified.

imaginary number A number of the forrmi, wheremis any non-zeraoeal
numberandi = V-1.

improper fraction A fraction in which thenumeratois greater than the

: 12 . . . .
denominatore.g. - An improper fraction may also be written asnaxed
number

Back <« > 260



Contents

independent variable The quantity in an experiment or mathematical
manipulation whose value(s) can be chosen at will within a given range. On
agraph the independent variable, is by convention, plotted along the
horizontalaxis Compare withdependent variable

index (plural indices) Seexponent
integer A positive or negative whole number (including zero).

integral Pertaining to an integer. For example the statementtitn take
integral values from-2 to +2 means that the possible valueswére-2, -1,
0,1land 2.

intercept The value on onexisof agraphat which a plotted straight line crosses
that axis, provided that axis does pass through the zero point on the other
axis. If the plotted line has an equation of foyre= mx+ c, the intercept on
they axis is equal ta.

interpolation The process of reading between data points plottedgmajah in
order to find the value of one or both of the plotted quantities at intermediate
positions.

interval level A level of measuremermm which theactualvalues of measurements
or counts are known and used in statistical analysis (e.g. dry mass in grams,
number of flowers per plant). See alsategorical levelordinal level

inverse cosinex is the inverse cosine (arccosine)yaf xis the angle whose
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cosineisy. i.e. x = cos 1y (x = arccogy) if y = cosx.

inverse sine x is the inverse sine (arcsine) pff xis the angle whossineisy. i.e.
x = sin"ty (x = arcsiny) if y = sinx

inverse tangent x is the inverse tangent (arctangent)yof x is the angle whose
tangenisy, i.e. x = tamty (x = arctary) if y = tanx.

inverse trigonometric function If y is atrigonometric raticof the anglex, thenx
is the inverse trigonometric function gf For example, ify = sinx, the
inverse trigonometric function is = sinty (or arcsiny) where sinty
(arcsiny) is the angle whose sineys

inversely proportional (quantities) Two quantities andy are said to be inversely
proportional to each other if an increasexiby a certain factor automatically
results in a decrease yrnby the same factor (e.qg. if the valuextioubles,
then the value oy halves). Inverse proportionality betwerandy is

indicated by writingy « )}( A graph in whichy is plotted againsx will be a
hyperbola See alsodirectly proportional

irrational number A number that cannot be obtained by dividing oneegerby
another, e.grr, V2 and e. See alsational number

latitude Part of the specification of the position of a point on the Earth’s surface:
the distance north or south of the Equator measure@greesA line of
latitude is an imaginary circle on the surface of the Earth.
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level of measurementThe three levels of measurement that data may be known or
analysed at areategorical levelinterval levelor ordinal level

linear scale A scale on which the steps between adjacent divisions correspond to
the addition or subtraction of a fixed quantity.

logarithm The logarithm of a number to a given base is the power to which the
base must be raised in order to produce the number.

logarithm to base 10 The logarithm to base 10 (or ‘common logarithm’, Jgpof
p is the power to which 10 must be raised in order to equale. if p = 10",
then loggp =n.

logarithm to base e The logarithm to base e (or ‘natural logarithm’) pfs the
power to which e must be raised in order to equidle. if p = €1, then

Inp=a.

logarithmic scale Scale on which the steps between adjacent divisions correspond
to multiplication or division by a fixed amount, usually a power of ten.

log-linear graph A graphof thelogarithmof one quantity against the actual value
of another quantity. For aexponential functiorf the typey = Ce*, graphs
of log,oy againstx and of Iny againstx will both be straight lines.

log-log graph A graphof thelogarithmof one quantity against the logarithm of
another quantity. For unctionof the typey = ax° (e.g.y = 2x°) graphs of
log,Yy against logg x and of Iny against Inx will both be straight lines.
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longitude Part of the specification of the position of a point on the Earth’s surface.
A line of longitude is an imaginary semicircle that runs from one pole to the
other. The line of zero longitude passes through Greenwich in London.
Other lines of longitude are specified by the angle east or west of the line of
zero longitude.

lowest common denominator The smallestcommon denominatasf two or more
fractions.

magnitude The size of a quantity, also referred to as the ‘modulusttor
gquantities have both magnitude and directierglarquantities have only
magnitude.

matched samplesWhen data are collected from tvgamplesuch that each item
of data from one sample can be uniquely matched with just one item of data
from the other sample (e.g. blood glucose levels measured in individuals
before and after they have taken medication), the samples are described as
matched. See alsmmatched samples

mean Term commonly used as an abbreviationdothmetic mean

median The middle value in a series when the values are arranged in either
increasing or decreasing order. If the series contains an odd number of items,
the median is the value of the middle item; if it contains an even number of
items, the median is tharithmetic mearmf the values of the middle two
items.
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minute (of arc) A 60th part of anlegreg(of arc).

mixed number A number consisting of a non-zenategerand afraction e.g. %
Any improper fractiormay also be written as a mixed number: for example

—=2-.
3 3

mode The most frequently occurring value in a set of data.
modulus Seemagnitude

multiplication rule for probabilities A rule stating that if a number of outcomes
occur independently of one another, firebability of them all happening
together is found by multiplying the individual probabilities.

natural logarithm Seelogarithm to base.e

normal distribution Distribution of measurements or characteristics which lie on
a bell-shaped curve that is symmetric about its peak, with the peak
corresponding to thmeanvalue. Repeated independent measurements of
the same quantity approximate to a normal distribution, as do quantitative
characters in natural populations (e.g. height in human beings).

null hypothesis A ‘no difference’ hypothesis proposed at the start of a statistical
hypothesis test (e.g. that theeanf two populationsare identical,
u1 = p2). Compare withalternative hypothesis

numerator The number or term on the top of a fraction. For example, in the
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. 3 . ) .a+b )
fraction—, the numerator is 3; in the fractlonc—, the numerator ia + b.
See alsa@lenominator

opposite (trigonometry) The side opposite to a particular angle iight-angled
triangle

order of magnitude The approximate value of a quantity, expressed as the nearest
power of ten. If the value of the quantity is expresseddientific notatioras
ax 10", then the order of magnitude of the quantity i$' #f0a < 5 and 10+1
if a> 5. The phrase is also used to compare the sizes of quantities, as in ‘a
metre is three orders of magnitude longer than a millimetre’ or ‘a picogram
is twelve orders of magnitude smaller than a gram’.

ordinal level A level of measuremerih which the data can be logically ranked
but in which theactualvalues of the measurements or counts are either not
known or not used in statistical analysis (e.g. tallest to shortest, heaviest to
lightest). See alsoategorical levelinterval level

origin (of a graph) The point on a graph at which the quantities plotted on the
horizontalaxisand the vertical axis are both zero.

parabola A curve that may be described by an equation of the form
y = ax? + bx+ ¢, wherex andy are variablesa is a non-zero constant, ahd
andc are constants that may take any value.

percentage A way of expressing a fraction with@enominatoof 100. For
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example, 12 per cent (also written 12%) is equivalent to twelve parts per

hundred orl—oo.

places of decimalsin decimal notationthe number of digits after the decimal
point (including zeroes). Thus ZR7 and 300 are both given to three
places of decimals.

population Statistical term used to describe the complete set of things or events
being studied.

power Seeexponent

powers of ten notation A method of representing a number as a larger or smaller
number multiplied by ten raised to the appropriate power. For example, 2576
can be written in powers of ten notation asZ&x 107 or 2576x 10%, or
0.02576x 10° or 257600x 1072. See als@cientific notation

precise Description of a set of measurements for which the random uncertainty is
small. Compare witlaccurate

probability If a process is repeated a very large number if times, then the
probability of a particular outcome may be defined in terms of results
obtained as the fraction of results corresponding to that particular outcome.
If the process has n equally likely outcomes and q of those outcomes
correspond to a particular event, then the probability of that event is defined
as ¢n. There are, for example, 6 equally likely outcomes for the process of
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rolling a fair die. Only one of those outcomes corresponds to the event
‘throwing a six’, so the probability of throwing a six és Five of the

outcomes correspond to the event ‘not throwing a six’, so the probability of
not throwing a six i2.

product The result of a multiplication operation. For example, the product of 3
and 5 is 15.

proportional Seedirectly proportionglinversely proportional

Pythagoras’ Theorem The square of thaypotenus®f aright-angled triangles
equal to the sum of the squares of the other two sides.

quadratic equation An algebraicequatiorfor x of the formax? + bx+ ¢ = 0,
wherea # 0 andb andc can take any value. For example2- x+3=01is
a quadratic equation.

guadratic equation formula Thesolutionsof aquadratic equatioof the form
ax? + bx+ ¢ = 0 are given by the formula

‘= —b+ Vb2 - 4ac
B 2a

radian The anglesubtendedt the centre of a circle by an arc equal in length to
the radius. In general, the anglsubtended by an arc lengshn a circle of

radiusr is given byé (in radians)= ?

Back <« >

268



Contents O

random uncertainty Measured values of one quantity that are scattered over a
limited range about eneanvalue are said to be subject to random
uncertainty. The larger the random uncertainty associated with the
measurements, the larger will be the scatter. Seepatsnseandsystematic
uncertainty

ratio The relationship between the sizes of two comparable quantities. For
example, if a group of 11 people is made up of 8 women and 3 men, the ratio
of women to men is said as 8 to 3 and written as 8 : 3. Ratios may be fairly

. . . , . 8 8
easily converted intéractions In this particular exampI%?3 =11 of the

group are women an% are men.

. . : a
rational number Any number that can be written in the forgn wherea andb are

. 7 -6 1 25 o
integersandb # 0, e.g. 7= 1; -6 = T; _:3,; 3.125= 5 Every terminating

or recurring decimais a rational number. See alda:ational number
real number A number that can be placed on the number line. The set of real
numbers is made up of all thationalandirrational numbers

. . 2. 3 :
reciprocal A termthat is related to another %SIS related toé. The reciprocal of

. X . .
2—/( is —, and vice versa, for any non-zero valuex@ndy. The reciprocal of

N™Mis N~™ and vice versa.
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recurring decimal A number in which the pattern of digits after the decimal point
repeats itself indefinitely. Every recurring decimal isséional numbeand

can therefore be written as a fraction, e.@333... = 3 ;

41 2345
0.123123123.. = 333" 0.234523452345.. = 9999

right angle The angle between two directions that are perpendicular (i.e.°at 90
to each other.

right-angled triangle A triangle where the angle between two of the sides is a
right angle

rounding error An error introduced into a calculation by working to too few
significant figuresTo avoid rounding errors you should work to at least one
more significant figure than is required in the final answer, and just round at
the end of the whole calculation.

sample Statistical term used to describe an unbiased sub-sepgpalation
sample standard deviation Seeestimated standard deviation of a population
scalar A guantity withmagnitudebut no direction. Compare withector.

scientific notation Method of writing numbers, according to which amational
numbercan be written in the form x 10" wherea is either anintegeror a
number written indecimal notationl < a < 10, andn is aninteger Thus
5870000 may be written in scientific notation a8%x 10°, and 0003 261
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may be written in scientific notation as281x 10~3. The terms ‘standard
form’ and ‘standard index form’ are equivalent to the term scientific notation.

second (of arc) Seercsec

second derivative A derivativeof a derivative, for example the derlvatlveg;[(

2
with respect tax. A second derivative is usually written as%)é or f”(x).

Sl units An internationally agreed system of units. In this system, there are seven
base units (which include the metre, kilogram and the second) and an
unlimited number of derived units obtained by combining the base units in
various ways. The system recognizes a number of standard abbreviations (of
which Sl, standing for Systéme International, is one). The system also uses
certain standard multiples and submultiples, represented by standard
prefixes. See alsgentianddeci

significance level The probability that the value oftast statisticould be as
extreme (usually as large, but in some statistical tests as small) as the value
obtained in a statistical hypothesis test if thél hypothesisvere true.

significant figures The number of digits, excluding leading zeroes, quoted for the
value of a quantity, and defined as the number of digits known with certainty
plus one uncertain digit. Thus if a measured temperature is given 23
(i.e. quoted to three significant figures) this implies that the first two digits
are certain, but there is some uncertainty in the final digit, so the real
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temperature might be Z8C or 238°C. The larger the number of significant
figures quoted for a value, the smaller is the uncertainty in that value.
Leading zeroes in decimal numbers do not count as significant figures (e.g.
0.002 45 is expressed to three significant figures). Numbers equal to or
greater than 100 can be unambiguously expressed to two significant figures
only by the use oécientific notatior{e.g. 450 can only be unambiguously
expressed to two significant figures by writing it in the forrd % 107).

Similarly, scientific notation must be used to express numbers equal to or
greater than 1000 unambiguously to 3 significant figures.

similar Two triangles (or other objects) are described as being similar if they have
the same shape butfférent size.

simplify To write anequationor expressionn its simplest form.

simultaneous equationsTwo or moreequationsvhich must hold true
simultaneously.

sine The sine of an anglgin aright-angled trianglés defined by

opposite

sin@) = hypotenuse

where ‘opposite’ is the length of the sidpposited and ‘hypotenuse’ is the
length of thehypotenuse

sketch graph A graphdrawn to illustrate the nature of the relationship between

Back <« >

272



Contents O

guantities, but not involving accurate plotting. On a sketch grapbtige is
usually indicated, but thaxesare not scaled.

skewed Description of distributions that are not symmetric about threganvalue.

small angle approximation For small angles (less than about 0.1 radian)
cosd ~ 0, and if the angle is stated radians siné =~ 6, tand ~ 6.

solution The answer, especially numerical value or values which satisfy an
algebraicequation

solve To find an answer, usually to find the numerical values which satisfy an
algebraicequation

Spearman rank correlation codficient (rs) A test statisticalculated in a
statisticalhypothesigest used to determine whether or not there is a
statistically significantorrelationbetween twardinal levelvariables.

square root The number or expression that multiplied by itself givess called
the square root dN. The positive square root &f can be written as either

\/NorN%.

standard deviation A quantitative measure of the spread of a set of
measurements. Forrepeated measurements of a quantity, with arithmetic
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meanx, the standard deviatios, is given by

S= 1 %gnll(xi —X)?

The symbobr, is also widely used (especially on calculators) as an
equivalent tos,. See alsosample standard deviatipestimated standard
deviation of a population

standard form Seescientific notation
standard index form Seescientific notation

statistically significant In science, the result of a statistical hypothesis test is
conventionally regarded as statistically significant if ginebability of the
value of thetest statistideing as large (or, in some statistical tests, as small)
as the one obtained is less than 0.05.

subject The term written by itself, usually to the left of the equals signin a
mathematicaéquation

subtend A straight line rotating about a certain point is said to subtend the angle it
passes through.

sum The result of an addition operation. For example, the sumof3and 2is 5. A
summation sign may be used as shorthand for more complicated addition
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operations, e.g.

n
in:X1+X2+---+Xn-
i=1

systematic uncertainty Measured values of one quantity that are consistently too
large or too small because of bias in the measuring instrument or the
measurement technique are said to be subject to systematic uncertainty. See
alsoaccuraterandom uncertainty

t-test One of a number of statistical tests ofigoothesisised to determine
whether there is atatistically significantifference between the estimated
population means calculated from twamplesDifferent versions of the test
are available fomatched sampleandunmatched samples

tangent (to a curved graph) The tangent to a curve at a given point P is the straight
line that just touches the curve at P and has the gaadientas the curve at
the point P.

tangent (trigonometry) The tangent of an anglén aright-angled triangles
defined by
_opposite

tang = —
adjacent

where ‘opposite’ is the length of the sidepositeand ‘adjacent’ is the
length of the sidexdjacento 6.
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term A singlevariable(such as/k or uy in the equatiornvg = uy + axt) or a
combination of variables, such ag.

test of associationA statisticalhypothesidest used to determine whether there is
a statistically significanaissociation between twaategorical levelariables
(e.g.x? tes) or a statistically significantorrelationbetween two variables at
ordinal level(e.g. Spearman rank correlatidns)) or atinterval level(other
correlation co#icients(r)).

test of difference A statisticalhypothesigest used to test whether there is a
statistically significantifference between, for example, the estimated
population means (e.g-test9 or estimated populatiomediangother tests)
calculated from two samples.

test statistic In most statistical tests offaypothesisthe value of a test statistic is
calculated using aaquation The value of the test statistic is then compared
with a table ofcritical valuesin order to determine whether tineill
hypothesisought to be accepted or rejected at a particsignificance level

trigonometric ratios The ratios of the sides ofregght-angled triangleincluding
tangentsine cosine

trigonometry The branch of mathematics which deals with the relations between
the sides and angles of triangles, usualiyt-angled triangles

true mean Thearithmetic meamf some quantity for a wholpopulation usually
denoted by the symbaql. For a large population, the true mean is generally
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unknowable and the best estimate that can be made of it is the mean of the
guantity for an unbiasesampledrawn from the population.

unmatched samplesWhen data are collected from two samples such that there is
no logical connection between any particular item of data from one sample
and any patrticular item of data from the other sample (e.g. the heights of
plants randomly assigned to either an experimental or a control group), the
samples are described as unmatched. Seevadsched samples

variable A quantity that can take a number of values.

vector A physical quantity that has a definteagnitudeand points in a definite
direction.

word equation An equationin which the quantities under consideration are
described in words.
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Hidden material

This ‘chapter’ contains material which you won’t normally read through in se-
quence, but will access it through the links from the main text.
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Question 1.1 (a)
(-3)x4=-12
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Question 1.1 (b)
(-10)-(-5)=-5
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Question 1.1 (c)
6+ (-2)=-3
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Question 1.1 (d)
(-12)+ (-6) = 2
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Question 1.2

The lowest temperature in the oceans, which corresponds to the freezing point, is
31.9 Celsius degrees colder than the highest recorded temperature, which is
30.0°C.

Therefore, freezing point of seawater30.0 °C - 319 °C
=-19°C

Back 283



Contents O

Question 1.3 (a)
117 - (-38)+ (—286)= -131
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Question 1.3 (b)
(-1624)= (-29) = 56
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Question 1.3 (¢)
(-123)x (—24) = 2952
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Question 1.4 (a)

The lowest common denominator is 6, SO

2 L _2x2 1 4 1.3

3 6 3x2 6 6 6 6

Dividing top and bottom by 3 gives

3 1
6 2
Alternatively,
2 1_2x6 1x3_12 3 _9
3 6 3x6 6x3 18 18 18

Dividing top and bottom by 9 gives

9_1

18 2

as before.
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Question 1.4 (b)
The lowest common denominator is 30, so

1 1 1x10 1x15 2x6

372 30 30 _ 30
10 15 12

30730 30
13

~ 30

2
5
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Question 1.4 (c)

In this case, the lowest common denominator isn’t immediately obvious, but a
common denominator will certainly be given by the product of 3 and 28, so

5 1 5x3 1x28

28 3 28x3 3x28
15 28

84 84
13

84
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Question 1.5 (a)

4 1
The original fraction— = - = 0.25.
e original fractio 6= 2 0.25
You may have chosen any number for your calculations. In this answer the number
2 is used, but the principles hold good whatever choice of (non-zero) number is

made.

Suppose we were to add 2 to the numerator and to the denominator

4+2 6 .
652" 18" 0.333 to three places of decimals

This is not the same as the original fraction. (There is just one special case in
which this kind of operation would not change the value of the fraction and that is
adding 0 to top and bottom, which obviously leaves the fraction unchanged.)
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Question 1.5 (b)

Suppose we were to subtract 2 from the numerator and from the denominator

4-2 2 .
T6-2-14" 0.143 to three places of decimals
This is not the same as the original fraction. (Again, subtracting 0 from top and
bottom is the only case in which this operation leaves the fraction unchanged.)
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Question 1.5 (c)
If we square the numerator and the denominator

4x4 16
16x 16 256

This is not the same as the original fraction.

= 0.0625
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Question 1.5 (d)

If we take the square root of the numerator and of the denominator

N

=05

2l
(o))
AN

This is not the same as the original fraction.

Incidentally, checking a general rule by trying out a specific numerical example is a
helpful technique, which will be useful for algebra in Chapter 4.
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O
Question 1.6 (a)
2 2x3 6
? X 3= T = ?
Back
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Question 1.6 (b)

5 ,.5,1.5x1_5
9" 977 9x7 63
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Question 1.6 (c)

1/6 1
1/3 6

1_1
376

Back 296



Contents O

Question 1.6 (d)

3><7><2—3X7X2— 42
47877 4x8x7 224

Dividing top and bottom by 2, and then by 7

42 21 _ 3
224 112 16

Alternatively, the original could have been simplified in the same way before
carrying out any multiplication:
3 7' 2" 3

— X — X — = —
4, 8 71 16
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Question 1.7 (a)
5 1 1 1

T2 2%x2 4

You might have gone one step further and expressed this in decimal notation as
0.25.
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Question 1.7 (b)

1

§:33:3X3X3:27
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Question 1.7 (c)
1 1

01
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Question 1.7 (d)

1 1

10F ~ Toooo~ 20001
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Question 1.8 (a)
2° =512
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Question 1.8 (b)

1 .
33= B 0.037 to three places of decimals

It doesn’t matter if you quoted more digits in your answer than this. There is more
explanation in Chapter 2 about how and when to rouffithe values given on your
calculator display.
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Question 1.8 (c)

1
— =42-00625
42
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Question 1.9 (a)

930 s 92 _ 5(30+2) _ 932
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Question 1.9 (b)

325, 3-9 _ 3(25+(-9)) _ 316
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Question 1.9 (c)
107/10° = 107 = 10% = 10479 = 107 (or 1/10)
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Question 1.9 (d)
107/10% =107 - 108 =103 = 10°

or alternatively

102/10‘3:102xri3:102><103:105
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Question 1.9 (e)
104+ 10 = 10042 = 10°®
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Question 1.9 (f)

2
LEXI07 _ 15129 - 10 or )
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Question 1.10 (a)

(416)2 _ 416x2 _ 432
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Question 1.10 (b)

(5-3)2 _ 5(-3)x2 _ 56

. ) 1
This could also be written a%.
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Question 1.10 (c)

(1025)_1 - 108D = 10725

. ) 1
This could also be written as—.
1025

Back -
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Question 1.10 (d)

(1)6 16 1 1

3B (33)° T 336 318
or alternatively

6
1\V° 36 ,3x6 _ o-18_ 1
(ﬁ) _(3 ) =336_3 = 35
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Question 1.11 (a)

FromEquation 1.3

(2)? = 2%3) =22 =4
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Question 1.11 (b)

FromEquation 1.3

V10t = (10%)

NI

— 1073 = 1% = 100
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Question 1.11 (c)

FromEquation 1.3

3 1\3
1008 = (1002) — 10° = 1000

Alternatively

1008 = (1003)% - (105)% = 10°/2 = 10° = 1000
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Question 1.11 (d)

1 1
=—-—=02
1253 50

Since the cube root of 125 is 5.

12513 =
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Question 1.12 (a)

Multiplication takes precedence over subtraction, so

35-5x2=35-(5x 2)
= 35- 10
=25
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Question 1.12 (b)

Here the brackets take precedence, so

(35-5)x 2 =30x% 2
= 60
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Question 1.12 (c)

Again, the brackets take precedence over the (implied) multiplication, so

5(2-3) = 5x (-1)
=-5
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Question 1.12 (d)

Here the exponent takes precedence:

3x22=3x4
=12
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Question 1.12 (e)

The exponent takes precedence again:

22+3=8+3
=11
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Question 1.12 (f)

Here both brackets take precedence over the (implied) multiplication:

(2+6)(1+2)=8x3
=24
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Question 2.1 (a)

5.4 x 10* = 5.4 x 10000
= 54000
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Question 2.1 (b)

1
21x102=21x —
% * 100

21
~ 100
=0.021
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Question 2.1 (c)

1
06x101=06x —

10
_ 06
10

= 0.06
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Question 2.2 (a)

215=2.15x 100
= 215x 107
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Question 2.2 (b)

467 = 467x 10
= 467x 10
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Question 2.2 (c)

152x 10° = 1.52x 100x 10°
=152x 10° x 10°
= 1.52x 10%+3)
=152x10°
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Question 2.2 (d)

8.76
0.0000876:100000

_ 876
S 1P
= 876x 107°
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Question 2.3 (a)

A kilometre is 18 times bigger than a metre, so

3476 km= 3.476x 10° km
=3476x10°x 10° m
=3.476x10° m
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Question 2.3 (b)

A micrometre is 18 times bigger than a nanometre, so

8.0 um = 8.0 x 10> nm
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Question 2.3 (c)

A second is 18times bigger than a millisecond, so
0.8 s=0.8x 10> ms

To express this in scientific notation, we need to multiply and divide the right-hand
side by 10:

103
0.8x 10> ms= (0.8 x 10)x To ™S
= 8><(103><1CTl) ms

= 8x10% D ms
= 8x10° ms
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Question 2.4 (a)

One million= 10, so the distance is

5900x 10° km = 5.9 x 10° km
~ 109 km (or 10"* m)
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Question 2.4 (b)

The diameter of a spherical object is given by twice its radius. So for the Sun,

diameter= 2x 6.97x 10’ m
=1394x 10" m
=1.394x 10 m
~10°m
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Question 2.4 (c)

21 = 2 x 3.14 (to two places of decimals)
= 6.28

This is greater than 5, so can be rounded up to the next power of ten to give the
order of magnitude, i.e.72~ 10 (or 10).
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Question 2.4 (d)

7.31x 10?0 kg ~ 10x 10726 kg
- 10(—26+1) kg
~10%° kg
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Question 2.5 (a)

() 10° m =1 mand 102 m = 0.01 m, so the dference between them is
(1-0.01) m=0.99 m.

(i) 10° m =100 m and 18 m = 1 m, so the dterence between them is 99 m.

(iii) 10 m = 10000 m and 1®m = 100 m, so the dference between them is
9900 m.

It is quite clear that as one goes up the scale the interval between each successive
pair of tick marks increases by 100 times.
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Question 2.5 (b)

The height of a child is about #0n, i.e. 1 m. The height of Mount Everest is
about 16 m (actually 8800 m, but it is not possible to read that accurately from the
scale on Figure 2.2). So Mount Everestis0* times taller than a child.

Back 340



Contents O

Question 2.5 (c)

The length of a typical virus is 18 m and the thickness of a piece of paper is
10~* m, so it would take- 1074/10°8 = 104 (-8) = 1048 = 10* viruses laid end
to end to stretch across the thickness of a piece of paper.
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Question 2.6

Magnitude 7 on the Richter scale represents four points more than magnitude 3,
and each point increase represents a factor 10 increase in maximum ground
movement. So a magnitude 7 earthquake corresponds't.4010 000) times

more ground movement than a magnitude 3 earthquake.
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Question 2.7

Each of the quantities is quoted to four significant figures.
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Question 2.8 (a)

The third digit is an 8, so the second digit must be rounded up:

—38.87°C = -39 °C to two significant figures
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Question 2.8 (b)

There is no way of expressing a number greater than or equal to 100
unambiguously to two significant figures except by the use of scientific notation.
The third digit is a 5, so again the second digit must be rounded up.

~1958°C = -1.958x 10 °C
= -2.0 x 107 °C to two significant figures

{Note that the final zero does count.}
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Question 2.8 (c)

Again, this quantity cannot be expressed unambiguously to two significant figures
without the use of scientific notation. The third digit is an 8, so the second digit
must be rounded up.

10834 °C = 1.0834x 10° °C
= 1.1x 10 °C to two significant figures
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Question 3.1

(inchy, cn? and square miles all have units of (lendttgo they are all units of
area.

% cannot be a unit of area because the unit which has been squared, the second, is
a unit of time not of length.

m~2 cannot be a unit of area because the metre is raised to the pones2, not 2.

km?® cannot be a unit of area because the kilometre is cubed not squared. In fact, it
is a unit of volume.
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Question 3.2 (a)

6.732
151

{6.732 is known to four significant figures, and 1.51 is known to three significant
figures. The number of significant figures in the answer is the same as in the input
value with the fewest significant figures, i.e. three.}

= 4.458 = 4.46 to three significant figures.
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Question 3.2 (b)

2.0 x 2.5 = 5.0 to two significant figures.

{2.0 and 2.5 are both given to two significant figures, so the answer is given to two
significant figures too.}
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Question 3.2 (c)

Working to three significant figures and rounding to two significant figures at the
end of the calculation gives:

2
(:_i) = (1.35F = 1.82 = 1.8 to two significant figures.

{Squaring is repeated multiplication, so it is reasonable to quote the final answer to
two significant figures. However, working to two significant figures throughout
introduces a sizeable rounding error and gives a final answer of 2.0.}
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Question 3.2 (d)
The total mass: 3 x 1.5 kg = 4.5 kg.

{Note that you have exactly 3 bags of flour, so it would not be correct to round the
answer to one significant figure.}
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Question 3.3 (a)

(3.0x 10°) x (7.0x 1072) = (3.0 x 7.0) x 10°+(-2)
=21x10*
=21x10°

{Note that 21x 10* is a correct numerical answer to the multiplication, but it is not
given in scientific notation.}
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Question 3.3 (b)

8x10* 8

W = ZX104_(_1):2X 105
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Question 3.3 (¢)

10 x (4 x 10%) 4 10++4

= = 4x 1003 = 4x 1013
1x 105 10-5
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Question 3.3 (d)

(300 10°)° = (3,007 x (10F)°
= 9.00x 1082
= 9.00x 10'®
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Question 3.4

Area= (9.78x 10°° m)’
=(9.78x 1(T3)2 m?
= 9.56 x 107> m? to three significant figures.
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Question 3.5

To one significant figure,

distance to Proxima Centauti4 x 10 m
distance to the Sus 2 x 101 m

Thus,

distance to Proxima Centauri 4 x 10 m
distancetothe Sun ~ 2x 101 m
L4, 10%m

2 101'm

~ 2x 101612

z2><105

Thus Proxima Centauri is approximatelx2L0° times further away than the Sun.
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Question 3.6 (a)

1 m=100cm, so 1 rh= 1007 cn?
Thus 104 n? = 1.04 x 100% cnm? = 1.04x 10* cm?
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Question 3.6 (b)

1m=10F um,so1nf= (106)2 pm?

Thus 104 n? = 1.04x (10F)° wm? = 1.04x 102 um?
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Question 3.6 (c)

1km=103m, so 1 knf = (103)2 m?

Thus 1 nt = ! 5 km?
(10%)
and 104 n? = 1'042 km? = 1.04x 105 km?
(10%)
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Question 3.7 (a)

1km:103m,solkrﬁ':(103)3 m3 = 10° m3

Volume of Mars= 1.64 x 10 km?3
= 1.64x 101 x 10° m®
= 1.64x 100 m3
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Question 3.7 (b)
1m=10° mm,soln31:(10?’)3 mme = 10° mm?®

Thuslmn%:im3:109m3
10°

Volume of ball bearing= 16 mn?
=16x10°m?
=16x108%m?
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Question 3.8 (a)

1 m=100cm

So

1
l1cm=—m
100

Thus

1 cmday?! = 1%0 mday !

and

12 cmday? = 11—020 mday !

=0.12 mday?
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Question 3.8 (b)

1 day= 24x 60x 60 s= 8.64x 10* s

So
1 cmday? = 1 emst
8.64x 104
and
12cmdayl= ———  cmst
Y = 86ax 100

=14x10%cms?
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Question 3.9 (a)

1
1m:103mm,solmm:ﬁm=10‘3m

1 year= 365x 24x 60x 60 s= 3.154x 10" s

To convert from mmyeat m s we need tanultiply by 1072 (to convert the mm
to m) anddivideby 3.154x 107 (to convert the year to s™2).

1073
1mmyeafl=—— _ms?
3.154x 107

so

1073 4
— _ms
3.154x 10/
= 3x 1072 ms™ to one significant figure

0.1 mmyear! = 0.1 x

So the stalactite is growing at abouk30 12 ms.
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Question 3.9 (b)

1
1m=100cm,solcm — m=102m
100

1 day= 24x 60x 60 s= 8.64x 10* s

To convert from cm day* to m s we need tanultiply by 1072 (to convert the cm
to m) anddivideby 8.64 x 10* (to convert the day* to s1).

1 2

1 cmday?! = ﬁ ms?!
L m S_l
8.64x 104
=14x10°%ms?

12 cmday! = 12x

So the glacier is moving at about4lx 107 ms1.
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Question 3.9 (c)

1km=10°m
1 Ma=10° x 365x 24x 60x 60 s= 3.154x 10*3 s

To convert from km Mat to m s, we need tanultiply by 10® (to convert the km
to m) anddivideby 3.154x 102 (to convert the Ma' to s71).

10°
1kmMal=_—" mgs!
3.154x 1013
1
35 kmMal=35x ;’3 ms?
3.154x 1013

= 1.1x 10°° ms? to two significant figures.

So the plates are moving apart at an average ratelof 10° ms™L.

Comparing the answers to parts (a), (b) and (c) shows that the tectonic plates are
moving apart approximately 300 times faster than the stalactite is growing. The
glacier under consideration moves about 1000 times faster still, but remember that
there is considerable variation in the speeds at which all of these processes take
place.
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Question 3.10 (a)
11=10°ml

To convert fromug I~ to pg mi~t we need talivide by 1C°.

1
1ugl?t= 15 M9 mi~t = 1073 pgml

10pgl™t =10x 1073 pgml
= 1.0x 1072 pg mi~* to two significant figures.
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Question 3.10 (b)

Note that 10ug =1 = 10 pg dm 3, since 1 litre is defined to be equal to 1 #m
(Section 3.4.2).

1 mg= 10° ug

SO

1ug:%mg:1¢3mg

To convert frompg dnt to mg dn? we need tanultiply by 1073,

1 pg dn? = 103 mg dn?

10 pgdnt = 10x 102 mg dn?
= 1.0x 102 mg dnr to two significant figures.

So a concentration of 10g 11 is equal to 10 x 102 mg dn.
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Question 3.10 (c)
Note that 10ug |~ = 10 pg dm 3.

1g:106ug

1
lpg=-—g=10"°
solpg=-59 9

1m=10dm

soln? =10 dm®

1
andldnii= — m®=10°m?
108

To convert frompug dm™3 to g 2 we need tanultiply by 107 (to convert thaug
to g) anddivideby 10°2 (to convert the dr® to m3).

0—6

3 1 _
1ugdm3:mgm3
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6

_ 10° _
1Opgdm3:10xrrsgm3

=10x 10D gm3
=10x103gm3

= 1.0x 1072 g m™2 to two significant figures.

So a concentration of 10g 1~ is equal to 10 x 1072 g m™3.

Back |

371



Contents O

Question 3.11

(i) and (iii) are equivalent. Multiplication is commutative, sy + 2) = (y + 2)X

(i) and (v) are equivalent. Both multiplication and addition are commutative, so
Xy+2Z=2Z+YyX

Note that (i) is not equivalent to (ii) since, in (i), the whole gf{ z), not justy, is
multiplied by x.

Substitutingx = 3,y = 4 andz = 5 gives
() a=x(y+2 =3x(4+5)=27
(i) a=xy+z=B8x4)+5=17
(i) a=(y+2x=4+5)x3=27
(iv) a=x+yz=3+(4x5)=23
(V) a=z+yx=5+(4x3)=17
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Question 3.12
The equivalent equations are (i) and (iii), since

D6 _abd _bac
d d d

2 222

Note that only thes is squared, so (iijn = abT and (vim= g

Only the numerator of the fraction is multiplied hyso (iv)m = % is different
too.

are diferent.
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Question 3.13

NPP = 1.06x 10° kJ
R=3.23x 10" kJ

FromEquation 3.8

GPP= NPP+R
= 1.06x 10° kJ+ 3.23x 10" kJ

= 1.38x 10° kJ to three significant figures.
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Question 3.14
1=621nmf = 4.83x 104 Hz

Converting to Sl base units gives

1=621x10°m=6.21x10"m
f =483x 10" Hz=4.83x 10" st

FromEquation 3.13

v=fa
=483x10s1x6.21x10" m
= 3.00x 10° ms™ to three significant figures.

{Note that this is the speed of light in a vacuum. Light of this frequency and
wavelength is in the red part of the visible spectrum.}
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Question 3.15 (a)

FromEquation 3.5

4
V=_nrd

3
r=6.38x10°km=6.38x10°x 10°m = 6.38x 10° m

So
4 3
V=g (6.38x 10° m)
= 1.09x 10°* m® to three significant figures.

The Earth’s volume is. 09 x 10?1 m3.
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Question 3.15 (b)

FromEquation 3.18

m
r2

G =6.673x 10 Nm? kg2
my = 5.97 x 107 kg
mp = 7.35x 10?2 kg

r = 3.84x 10° km
=384x10°x 10° m
=384x10°m

Substituting values into the equation gives

5.97x 10?4 kg x 7.35x 10?2 k
Fg = 6.673x 10711 Nmkg2 x 22X =~ OX Lo0X 27

(3.84x 108 m)?

Rearranging to collect the units together

_ 6.673x 10711 x 5,97 x 1074 x 7.35x 10P22N m? kg ? kg kg

F
’ (384 x 108)% m?
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Many of the units can be cancelled

_ 6.673x 10711 x 5,97 x 107 x 7.35x 1072 N kg ? kg kg
(3.84x 108)?

Fg

Calculating the numeric value gives

Fg = 1.99x 10?° N to 3 significant figures.

{Note that there was no need to express the newtons in terms of base units on this
occasion; all the other units cancelled to leave N as the units of force, as expected.}

The magnitude of the gravitational force between the Earth and the Moon is
1.99x 107° N.
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Question 4.1 (a)

v = fA can be reversed to giviel = v.

To isolatef we need to remove, andf is currentlymultiplied by 1 so, according
to Hint 3, we need talivideby 1. Remember that we must do thislioth sides of
the equationso we have

fi v

A A

The A in the numerator of the fraction on the left-hand side cancels with the
the denominator to give

f=-
1
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Question 4.1 (b)

Etot = can be reversed to give + Ep = Eqor.

To isolateEx we need to removEy, andE, is currentlyaddedto Ex so, according
to Hint 1, we need tsubtract E. Remember that we must do thislioth sides of
the equationso we have

Ex = Etot—Ep

Back 380



Contents O

Question 4.1 (c)
_m can be reversed to ivrg =
P=y gvg =p

To isolatem we need to remov¥, andmis currentlydividedby V so, according to
Hint 4, we need tanultiply by V. Remember that we must do thiskioth sides of
the equationso we have

mv _
v

TheV in the numerator of the fraction on the left-hand side cancels wittime
the denominator to give

oV

m = pV
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Question 4.2 (a)

b = c-d+ ecan be written as — d + e = b (with e on the left-hand side).

Adding d to both sides gives

c-d+e+d=Db+d

le.
c+e=b+d

Subtractingc from both sides gives
c+e-c=b+d-c

le.

e=b+d-c
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Question 4.2 (b)

p = pgh can be written apgh = p (with h on the left-hand side).
Dividing both sides by gives

pgh _ p
PP

ie.
gh= >
P

Dividing both sides by gives

gh_»p
g g
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Question 4.2 (c)

2GM
Vgsc: T

Multiplying both sides byR (to getR onto the left-hand side) gives

2GMR
VgSB = R

=2GM

Dividing both sides by3. gives

VasR _ 2GM
2 T2
Vesc Vesc
le.

_ 2GM

R
2
Vesc
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Question 4.2 (d)

E=hf-¢
Adding ¢ to both sides (to get onto the left-hand side) gives
E+¢og=hf—-9¢+¢
le.
E+¢=hf
Subtractinge from both sides gives
E+¢-E=hf-E
that is

p=hf-E
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Question 4.2 (e)

We need to start by finding an equation 6r

a= % can be written agdé = a (with c on the left-hand side).
Multiplying both sides byd gives
le.

be® = ad

Dividing both sides by gives
b ad
D b
le.
o ad
b

Taking the square root of both sides gives
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Question 4.2 (f)

b . b . .
a= c can be written a e a (with b on the left-hand side)
Squaring both sides gives

— =g
Cc

Multiplying both sides by gives

bc
— =a’
C
i.e.
b = ac
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Question 4.3 (a)

We need to start by finding an equation f8r
Ex = 3mV can be written agmv? = Ey. (with thev? on the left-hand side).

Multiplying both sides by 2 gives
mv = 2Ex
Dividing both sides byn gives

m

Taking the square root of both sides gives

ve s 2K
m

but we are only interested in the positive value on this occasion.
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Question 4.3 (b)
If Ex = 2% 10° Jandm = 4 x 10?1 kg
m
_2x2x10%)
~\ 4x 101 kg
2
_ J1x1085TS

{At this speed, the plate would move 3 cm in a year.}
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Question 4.3 (c)
If Ex = 2% 10° J andm = 70 kg

_2x2x10%)
B 70 kg

=8ms

{The sprinter, having a smaller mass, has to move rather faster than the tectonic
plate!}
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Question 4.4 (a)

Vy = Uy + ayt can be written as
Uy + axt = Vx

Subtractinguy from both sides gives
axt = vy — Uy

Dividing both sides by gives

Vyx — Ux
t

aX:
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Question 4.4 (b)

Squaring both sides of = \/E gives
P

Multiplying both sides by gives
pV3 =i
Dividing both sides by? gives

p=5
V8
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Question 4.4 (c)
Multiplying both sides of = L by d? gives
4t d?
L
2 e
P =

Dividing both sides by gives

L
d?=—
4k

Taking the square root of both sides gives

d== Lt

4t F

{Note that if we consider just the positive value, we have arrivelfcatation 3.20
albeit written rather dferently.}
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Question 4.5 (a)

Ho _ l1ip _ poXiiip _ poliiz

on " d _ 2nxd _ 2nd
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Question 4.5 (b)

2b 2b

Note thats— / 2 means— divided by 2.

2=""xZ=22

3a 323 1 3a
2b 2 4b

Back

395



Contents O

Question 4.5 (c)

The product x b will be a common denominator, so we can write

@+3_c_2bxb+3cxc_2b2+3c2
c b cxb bxc  cb

This is the simplest form in which this fraction can be expressed.
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Question 4.5 (d)

2ab 2ac 2ab b

— X
C b C 2ac

Cancelling the ‘2a’s gives

2ab 2ac %b b b2

c'b 2<§cc2

{Note that, for all parts of Question 4.5 and for many other questions involving
simplification, it is possible to check that the algebraic expression you end up with
is equivalent to the one that you started with by substituting numerical values for
the variables. For example, settiag- 2, b = 3 andc = 4 in the original expression
gives

@_@: (2><2><3);(2><2><4)

c b 4 3
12 16 16 3 9
=2 73737373 % 16
Substituting the same values in the answer b s 3—2 _ 3 }
g %" 16
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Question 4.5 (e)

The productf (f + 1) will be a common denominator, so we can write

1 1 (f+1) f
fof+1 f(f+1) (F+1)f
_f+1—f
T f(f+1)
!

T f(f+1)

Back 398



Contents

Question 4.5 (f)

2b? . 2c2 _ ‘2b2 (a+0)
(bJrC)T(a+C)_(b+c)>< 2C2

_ b*a+o)
~ c2(b+c)
2
The expression can be written a% (@+c)
c) (b+c)

but cannot be simplified further.
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Question 4.6
The equation can be written as
111
f u v
= U—VV + vﬂu (taking the productiv as the common denominator)

V+Uu

uv
Taking the reciprocal of both sides of the equation gives

uv
fz—0
V+Uu
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Question 4.7 (a)
1(v +u)t—1vt+lut
2 X X _2 X 2 X

or alternatively

1 Vel Uyt Wyt + Uyt
=(W+u)t=—+—or

Back
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Question 4.7 (b)

(@-b-(a-c) a-b-a+c
2 B 2
c-b
2

sincea— a = 0, and-b + cis more tidily written ag — b.

Back 402



Contents O

Question 4.7 (c)

e
(k=2)k=3)=k? -3k -2k +6
<
=k2-5k+6
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Question 4.7 (d)
A

=22 =(-2)(t-2
( )* =( (%/)
=t* -2t -21+4

=12 -4r+4
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Question 4.8 (a)
Y -y=yly-1)
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Question 4.8 (b)
X2 — 25 = (x + 5)(x — 5), by comparison witfEquation 4.3
We can check that the factorization is correct by multiplying the brackets out. This
gives
()c+%5§J>5)=x2 - 5x +5x-25
~_
=x2-25
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Question 4.9

Both the terms on the right-hand side§; = %mv2 + mgAh includem, so we can
rewrite the equation as

Etot = M (3V7 + gAh)
Reversing the order gives
m (3 + gAh) = ot
Dividing both sides b)(%vz + gAh) gives

_ _ Bt
V2 + gAh

This is a perfectly acceptable equation figrbut the fraction in the denominator
looks a little untidy. Multiplying the numerator and denominator by 2 gives

2E
M tot
V2 + 2g Ah
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Question 4.10 (a)

From the answer tQuestion 4.7 (c)

k? -5k +6 = (k- 2)(k-23)

Thus, ifk? — 5k + 6 = 0, then k — 2)(k — 3) = 0 too,
sok—-2=0o0rk-3=0.

le.k=2ork=3

Checking fork = 2:
k?-5k+6=2%2-(5x2)+6=4-10+6=0, as expected.

Checking fork = 3:
k?-5k+6=3%-(5x3)+6=9-15+6 =0, as expected.

So the solutions of the equatith — 5k + 6 = 0 arek = 2 andk = 3.
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Question 4.10 (b)

From the answer tQuestion 4.7 (d)
t2—4t+4=(t-2)7?

Thus, ift? — 4t + 4 = 0, then { - 2)° = 0 too,
sot-2=0,
Le.t=2.

Checking:
t=2givest? —4t+4=2°-(4x2)+4=4-8+4=0, as expected.

So the solution of the equatidf— 4t + 4 = 0 ist = 2.
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Question 4.10 (c)

Comparison ok? — 5k + 6 = 0 with ax? + bx+ ¢ = 0 shows thaa = 1,b = -5 and
¢ = 6 on this occasion, so the solutions are

~b+ Vb2 - 4ac
2a
_ —(-5)£ V(-5)2 - (4x 1x6)
B 2x1
_ 5+ V25-24

2
5+1

2
_5+1 6 5-1 4

2 §=3Ol’k:T:§:2.

So the solutions of the equatié® — 5k + 6 = 0 arek = 2 andk = 3. This is the
same answer as was obtainegbart (a)and could be checked in the same way.

k =

sok
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Question 4.10 (d)

Comparison of? — 4t + 4 = 0 with ax2 + bx+ ¢ = 0 shows thad = 1,b = -4 and
¢ = 4 on this occasion, so the solutions are

~b+ Vb2 - 4ac
2a
_—(-4) £ (42 - (4x 1x 4
B 2x1
_ 4+ V16-16

2
0

k =

4

H

N

=2

So there is just one solution td— 4t + 4 = 0; namelyt = 2. This is the same
answer as was obtainedart (b)and could be checked in the same way.
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Question 4.11 (a)
Rearranging = mvto makev the subject gives

V= Rp] (dividing both sides byn)

Substituting inEy = $m\? gives

2
= %m%

P
m

\S)

Back
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Question 4.11 (b)

Since both equations are already written vtlithe variable we are trying to
eliminate) as the subject, we can simply set the two equatioris égual to each
other:

Imv? = mgah

There is airm on both sides of the equation; dividing both sides of the equation by
mgives

vZ = gah
Multiplying both sides of the equation by 2 gives
V2 = 2gAh

Taking the square root of both sides of the equation gives

V = ++/2gAh
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Question 4.11 (c)

Rearranging = fA to makef the subject gives
f= % (dividing both sides by

Substituting inEx = hf — ¢ gives

hc
Ek—;“/’

Adding ¢ to both sides of the equation gives

hc
Ek+¢:7

Subtractingex from both sides gives

-—_E
[ 1 k
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Question 4.12

Let the number selected be represented:by

Adding 5 gives X+5

Doubling the result gives 2+ 5)=2x+10

Subtracting 2 gives @+ 10)—2=2x+8
- , 2X+ 8

Dividing by 2 gives X2+ =X+4

Taking away the number you first thought of givesH{4) — x = 4.
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Question 4.13

Let H represent Helen’s height in cm aiidepresent Tracey'’s height
in cm. Since Tracey is 15 cm taller than Helen we can write -

———em

T=H+15 (i) 7zm)
The height of the wall is equal to Tracey’s height up to her shoulders wall H
(T — 25) plus Helen’s height up to her eyds £ 10), thus

37|
(T - 25)+ (H — 10) = 300 (ii) &S

Simplifying (ii) gives
T + H - 35= 300 43

Adding 35 to both sides gives %
R

T+H=335

Substituting forT from (i) gives

(H+15)+H =335
2H +15=335
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Subtracting 15 from both sides gives
2H = 320

Dividing both sides by 2 gives
H =160

i.e. Helen is 160 cm tall.

Back )| 417



Contents O

Question 4.14

The equations required akg = mgAh (Equation 4.18andEy = %m\/2 (Equation
4.17).

Assuming that the child’s gravitational potential energy is converted into kinetic
energy,Ex = Eg.

Imv = mgah
Dividing both sides byn gives
v? =gah
Multiplying both sides by 2 gives
V2 = 2gAh
Taking the square root of both sides gives

V= ++/2gAh

On this occasion we are only interested in the positive square root,=+.6\/2g Ah
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SubstitutingAh = 1.8 m andg = 9.81 ms? gives

V= v2x981ms2x18m
= 5.9 ms ! to two significant figures

(noting thatVm2s1 = ms™?).
Checking
The units have worked out to be misas expected.

An estimated value is

va V2x10ms2x2m

~ V40 mZS_2

~6ms? sinceV40~ V36

The speed seems quite high; in reality not all of the child’s gravitational potential
energy would be converted into kinetic energy.

Back |
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Figure 2.1: Portions of the number line, showing the positions of a few large and
small numbers expressed in scientific notation.
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Figure 2.2: The scale of the known Universe.
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Figure 2.3: Some common sounds on the decibel scale of sound level.
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@ convert divide by 7,5 © convert divide by 755

E— E— —
length in mm length in m length in km

fo ® o 3
Convert muttiply by 1° Convert multiply by 1°

© convert divide by (1 092 ® convert divide by (10 92

area area area
in mm? in m2 in km?

o 3N o o
convert muigiply by () Convert mutiply by (10"}

oor\Veﬂ divide by (103)3 oor\vert divide by (103)3

o 0

volume voluie volume
in,[n&rL in in ks

*F

lo o 3\>
Convert multiply by Convert myliply by (\ )

Figure 3.8: Unit conversions for length, area and volume.
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Figure 3.11: A stone being thrown from aftl
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(o]
c+50=a+b+50 >

Figure 4.1: (a) The analogy between an equation and a set of kitchen scales. The
scales remain balanced if (b) 50 g is added to both sides or if (c) the weight on both
sides is halved.
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Figure 4.2: A Hertzsprung—Russell diagram showing the Sun and a number of other

stars.
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P-wave arrival S—wave arrival
.—mﬂ‘w / /
20seconds time

Figure 4.4: Seismogram recorded at the British Geological Survey in Edinburgh on
12 September 1988 at 2.23 p.m.
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Box 3.4 Some scientific formulae

C=2nr

whereC is the circumference of a circle of radius

A=7mr?

whereA is the area of a circle of radius

4
V= —nrd

3

whereV is the volume of a sphere of radius

F =ma

(3.3)

(3.4)

(3.5)

(3.6)

whereF is the magnitude of force on an objeat, is its mass and is the

magnitude of its acceleration.
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E=mc (3.7)

whereE is energymis mass and is the speed of light.

GPP=NPP+R (3.8)

whereGPPis the gross primary production of energy by plants in an ecosys-
tem,NPPis net primary production an@ is energy used in plant respiration.

p=y (3.9)

wherep is the density of an object of massand volumev.

Vs = \/E (3.10)
P

wherevs is the speed of an S wave travelling through rocks of densiéynd
rigidity modulusg.
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P = pgh (3.11)

whereP is the pressure at depthin a liquid of densityp, andg is the acceler-
ation due to gravity.

PV = nRT (3.12)

whereP is the pressure ai moles of a gas in a container of volurkeheld at
temperaturd andRis a constant called the gas constant.

v=fa (3.13)

wherev is the speed of a wavd, is its frequency and is its wavelength.

q=MmcAT (3.14)

whereq is the heat transferred to an objettjs its masscg is its specific heat
capacity and\T is the change in its temperature.
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o (3.15)
2
wherevyy is average speet is initial speed ands is final speed.
Vx = UX + axt (316)

whereuy, vy anday are respectively initial speed, final speed and acceleratjon,
all in the direction of the-axis, and is time.

1
&zug+§m9 (3.17)

wheresy, Uy anday are respectively distance, initial speed and acceleration] all
in the direction of thec-axis, and is time.

1151117)
Fg=G 2 (3.18)

whereFq is the magnitude of the gravitational force between two objects of
massesn andmp, a distance apart.G is a constant called Newton’s universal
gravitational constant.
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2GM

1/2
Vesc = (T) (3.19)

wherevescis the escape speed, i.e. the speed with which an object must belfired
from the surface of a planet of malskand radiusk in order just to escape from
it. G is Newton'’s universal gravitational constant.

d = [L/ (4 F)]¥? (3.20)

whered is the distance at which light from a star of luminosityhas a flux
density ofF.

Return toSection 3.5.2
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alpha A x nu (new) N v
beta B B Xi (csi) = g,
gamma r Y omicron O o]
delta A d pi (pie) I1 s
epsilon E € rho (roe) P p
Zeta Z ¢ sigma z o
eta H n tau (taw) T =
theta ] 0 upsilon Y v
iota I L phi (fie) d )
kappa K K chi (kie) X X
lambda A A psi Y
mu (mew) M u omega Q w

Table 3.1: The Greek alphabet. The pronunciation is given in parentheses where it

is not obvious.
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