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Introduction

Welcome toMaths for Science. There are many reasons for studying maths and
a compelling motivation for many people is that it provides a way of representing
and investigating the nature of the real world. Real world contexts could include
population statistics, or economics, or engineering. Here, the context is ‘science’ in
its broadest sense.

Much of science is couched in the language of mathematics. Nearly all courses
in science will assume some mathematical skills and techniques. It is clearly not
possible forMaths for Scienceto discuss all the mathematical techniques you might
need to pursue your study of science to degree level, but by the end of it you will
have acquired a good array of basic mathematical tools and confidence in using
them. Equally importantly, you will have a foundation that should make it much
easier to learn further mathematics if and when required.

Maths is in some sense a language with its own alphabet, vocabulary and ‘rules of
grammar’. With any language the only route to fluency is use and practice, but even-
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tually the process of constructing or understanding sentences becomes automatic
and one can then concentrate wholly on the message behind the words. You should
aim to develop a similar confidence and fluency in carrying out certain important
mathematical operations. There are few shortcuts: the route requires practice, prac-
tice and more practice! Keep paper, a pencil and your calculator to hand as you
study, and use them constantly. You may find it helpful to write out notes and even
to rework some of the examples given in the text as you go along. You will see that
there are lots of questions seeded through the text and at the ends of sections;you
should work through each question as you reach it. Links are provided to the solu-
tions, but don’t be tempted to look at these until you have made a serious attempt
at working out the answer for yourself. If you have solved all parts of a question
successfully on your own, then you are ready to move on.

The focus ofMaths for Scienceis maths and not science, so you are not expected to
bring specific prior knowledge of any particular branch of science. However, most
of the examples and questions involve the application of mathematical tools to a real
scientific purpose, so you will probably discover some interesting science along the
way. Enjoy the journey!
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Starting Points 1
The point to start from is always what you already know. It is assumed that you
are familiar with the everyday usage of the basic arithmetic operations of addition,
subtraction, multiplication, division and the use of a calculator to carry them out,
decimal notation (e.g. for money), the representation of an idea by a formula (such
as Einstein’s famousE = mc2), and the interpretation of information on a chart
or graph (of the kind that might, for instance, accompany a TV news item about
economic trends). Beyond that, you will find that many of the early chapters begin
with a little revision of ideas and skills that you will probably already have met.
This chapter, which concentrates on ideas about numbers – including fractions and
powers – and the use of your calculator, is slightly different from later ones in that
it covers concepts that are the basis for what is to follow in the rest of the course, so
more of it may constitute revision.
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If the points covered in the rest of this chapter are completely familiar, you need not
spend very long on them, but they are worth checking out thoroughly as they are the
foundation of much that is to come later inMaths for Science. Even if it is only for
the sake of revision, make sure you understand all the emboldened terms and test
your own skills against the learning outcomes by doing the numbered questions. If
any of the material is new to you, time spent mastering it now will pay rich dividends
later.

1.1 Numbers

‘Numbers rule the universe’ (Pythagoras)

Numbers are the bedrock of mathematics, underlying measurement, calculation and
statistics, among other branches of maths. Everybody is familiar with the counting
numbers (1, 2, 3, etc.), but scientists also make use of other kinds of numbers, so it
is appropriate to begin this course with some revision of numbers of various sorts
and the ways in which they may be combined.
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1.1.1 Different types of number

One convenient way to represent numbers is on a ‘number line’, as shown in Fig-
ure 1.1. A ‘step’ to the right is taken by adding 1 to the previous number and a step
to the left by subtracting 1. Positive and negative whole numbers, including zero,
are calledintegers.

0 54321

zero
negative numbers positive numbers

−5 −3 −2 −1−4

Figure 1.1: A number line showing the integers from−5 to 5.

Fractions(formed by dividing one integer by another) and their equivalent decimal
numbers fit on the number line between the integers. For example, (i.e. 0.5) is
halfway between 0 and 1, and−2.5 is halfway between−2 and−3. A number in
which there is a decimal point (e.g. 0.5, 2.5, 100.35, etc.) is said to be written in
decimal notation.
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Figure 1.2 shows part of a thermometer. The inset portion
covers a range from about+4.4 ◦C to−5.6 ◦C, which might
represent the variation in temperature over a 24-hour period
during the winter in the UK.

This illustrates how subdivision of the number line forms
the basis of a scale for measuring physical quantities that
can vary continuously. In this case, the scale between the
integralvalues is divided into tenths. (Note that, in order to
describe a physical quantity the numerical value has to be
accompanied by a unit of measurement, in this case the de-
gree Celsius. This aspect of measuring is covered in Chap-
ters 2 and 3.)

In the case of a fraction such as213
25 , the decimal equivalent

is exact to twoplaces of decimals(i.e. two digits after the
decimal point):

213
25
= 8.52

This decimal equivalent of213
25 cannot be given to more than

two places of decimals except by putting zeros on the end
(e.g. 8.520 000), so it is said to terminate at the digit 2.

(a) (b)

−4

−5

−3

−2

−1

0

1

2

3

4

Figure 1.2: Part of a thermometer.
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However, if you work out a fraction like13 on your calculator you will get a decimal
like 0.333 333 333 (the number of digits displayed will depend on the make of your
calculator). 41

333 will come out as 0.123 123 123, and70
9 as 7.777 777 778. These

decimals in fact recur (i.e. repeat themselves) for ever, so they are called infinite
recurring decimals. The calculator truncates them when it runs out of digits on the
display, and in the case of the final example also ‘rounds up’ the last digit from a
7 to an 8. In scientific calculations, it is usually totally inappropriate to quote so
many digits after the decimal point and in Chapter 2 we will consider the rules for
deciding how to round off such numbers in real situations.

Fractions and decimals are grouped together as the so-calledrational numbers. All
the rational numbers result in a decimal that either terminates or recurs. How-
ever, there are also numbers whose decimal equivalent neither terminates nor recurs.
These numbers cannot be obtained by dividing one integer by another, so they are
called irrational numbers. Well-known examples are

√
2 (the number that multi-

plied by itself gives 2, said as ‘the square root of 2’) and (π, which is defined as
the number obtained by dividing the circumference of a circle by its diameter). This
would be an appropriate moment to check that you know how to use theπ button on
your calculator. You should be able to get:

2× π = 6.283 185 307
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Note that as there are so many makes of scientific and graphics calculators on the
market, each operating differently, it is impossible to state the exact sequence of
keystrokes you will need to carry out particular calculations. Whenever you meet
a new type of mathematical operation, you should therefore check that you know
how to perform it on your own calculator and refer to the manufacturer’s instruction
book if necessary. A calculator symbol in the margin will alert you to the points at
which you particularly need to carry out this kind of check.

All the integers, rational and irrational numbers can be placed somewhere on the
number line, so they are grouped together as thereal numbers. All the numbers
you will use in this course will be real. However, it may interest you to know
that there are alsoimaginary numbersbased on the square root of minus 1, which
is usually represented by the symboli. Numbers made up of real and imaginary
parts, such as (3+ 2i) are known ascomplex numbers. Complex numbers are used
quite extensively in science and have practical applications in telecommunications,
electrical engineering and the beautiful patterns of fractals.

In case hearing about all these different types of numbers leads you to think that
straightforward ‘counting numbers’ hold little interest for scientists,Box 1.1shows
how a series of numbers, which mathematicians find interesting in their own right,
have also been found to describe intricate patterns of plant growth.
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Box 1.1 Fibonacci numbers

The sequence of numbers

0,1,1,2,3,5,8,13,21,34,55,89. . .

was first defined in 1202 by the Italian mathematician
Leonardo of Pisa, nicknamed Fibonacci. Each term in
the sequence after the first two is obtained by adding
together the previous two (0+1 = 1; 1+1 = 2; 1+2 =
3; 2+ 3 = 5, etc.)

It is intriguing to discover that the spiral patterns of
plant growth correspond to pairs of numbers in this se-
ries, as illustrated in Figure 1.3.

Part (a) shows a pinecone with 8 parallel rows of bracts
spiralling gradually and 13 parallel rows of bracts spi-
ralling steeply.

Part (b) shows a sunflower head in which the seeds spi-
ral out from the centre: 55 rows clockwise and 89 rows
anticlockwise.

Figure 1.3: Fibonacci numbers in nature.

Back J I 13



Contents �

1.1.2 Calculating with negative numbers

Many scientific quantities can take negative values. For example, chemical reac-
tions may either give out heat to the surroundings or absorb heat from the surround-
ings. Scientists adopt a convention that in the case of a heat-absorbing reaction, the
change in energy has a positive value. In the case of a heat-releasing reaction (such
as combustion), on the other hand, the energy change is negative. To be able to han-
dle quantities like this in scientific calculations it is essential to understand the rules
for performing thearithmetic operations(addition, subtraction, multiplication and
division) when negative numbers are involved. If I amalgamate a credit card debt of
£100 with an overdraft of £150, I owe £250 in total:

£100 debt+ £150 debt= £250 debt

Just in terms of numbers, this is equivalent to writing:

(−100)+ (−150)= −250

Note from this example how brackets can be used to make it clear how numbers
and signs are associated. The rules for performing arithmetic operations with nega-
tive numbers are summarized by the examples in the box‘Arithmetic with negative
numbers’. You should check that you are familiar with all the rules exemplified in
the box.
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Arithmetic with negative numbers

The numbers used as examples here are small integers between 1 and 10, but
could of course be any number. As is normally the case, positive numbers are
not preceded by a+ sign.

(−3)+ 5 = 2 3+ (−4) = 1 (−3)+ (−3) = −6
(−5)− 2 = 7 4− (−3) = 7 (−5)− (−4) = −1
(−2)× 2 = −4 3× (−2) = 6 (−2)× (−2) = 4
(−3)÷ 3 = −1 3÷ (−3) = −1 (−3)÷ (−3) = 1

Thinking about some of the examples in concrete terms may help to make sense of
them. For instance, taking money from a bank account that is already overdrawn in-
creases the amount of the debt (i.e. makes it ‘more negative’). Doubling an overdraft
produces an even larger debt (i.e. a bigger negative number).

Brackets are included to associate negative signs with particular numbers. For ex-
ample, 3+ (−4) means that (−4) is being added to 3; this is equivalent to subtracting
4 from 3, with the result (1).

Before reading on, test your understanding of the rules by doingQuestion 1.1.
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Question 1.1

Without using your calculator, work out:

(a) (−3)× 4 Answer

(b) (−10)− (−5) Answer

(c) 6÷ (−2) Answer

(d) (−12)÷ (−6) Answer

The examples given so far illustrate one important feature of both addition and mul-
tiplication: both these operations arecommutative. This is just the mathematical
way of saying that if one adds two numbers then the result (called thesum) is iden-
tical whichever number is written first. For example:

5+ 3 = 8 and 3+ 5 = 8

(−2)+ 3 = 1 and 3+ (−2) = 1

Similarly, in multiplying two numbers the result (called theproduct) is unchanged
if the order of the numbers is reversed. For instance:

5× 4 = 20 and 4× 5 = 20

(−3)× 4 = −12 and 4× (−3) = −12

Back J I 16



Contents �

Subtraction and division, on the other hand, are not commutative:

5− 3 = 2 but 3− 5 = −2

8÷ 4 = 2 but 4÷ 8 = 1
2

The commutativity of addition and multiplication may seem rather obvious when
applied to the counting numbers, but is worthy of attention because of its importance
in the algebraic manipulations that will be discussed in Chapter 4.

Worked example 1.1andQuestion 1.2are two rather more realistic examples re-
quiring the use of arithmetic with negative numbers.
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Worked example 1.1

One of the hottest places on Earth is Death Valley, California, where an air
temperature of 56◦C has been recorded. Probably the coldest inhabited place is
the Siberian village of Oymyakon, where the temperature has fallen to−72 ◦C.
What is the difference in temperature between these two extremes?

Answer

The difference in temperature may be worked out in two ways. The first
method involves subtracting the lower temperature from the higher, i.e. 56◦C−
(−72 ◦C), which gives apositive difference of 128 Celsius degrees. This
is the amount by which Death Valley is hotter than Oymyakon. Alterna-
tively, it is equally valid to subtract the higher temperature from the lower, i.e.
−72 ◦C − 56 ◦C, which gives anegativedifference of−128 Celsius degrees.
This is equivalent to saying that Oymyakon is 128 Celsius degrees colder than
Death Valley.

This example shows that in scientific calculations involving negative numbers
it is important to keep the physical situation in mind.
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Question 1.2 Answer

The maximum temperature range within the oceans is 31.9 Celsius degrees.
This is a much smaller variation in temperature than that achievable for the air
above a landmass, in part because the lowest ocean temperature is fixed at the
temperature at which seawater freezes. The highest recorded ocean tempera-
ture is 30.0 ◦C. What is the freezing point of seawater?

1.1.3 Working with negative numbers on a calculator

The calculations inQuestions 1.1and 1.2 were easy enough to work out by hand,
but many of the calculations you will encounter in science will require the use of a
calculator. It is therefore important to check that you know how to input negative
numbers into your own calculator.

Take the following examples:

6+ (−8) = −2

4− (−3) = 7

5× (−3) = −15

(−8)÷ (−2) = 4

and make sure that you can carry out each sum on your calculator, obtaining the
correct sign on the display of the answer. With some makes of calculator you will
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be able to enter the expression on the left-hand side more or less as it is written, with
or without brackets. With other makes you may have to use a combination of the
arithmetic operation keys and the+/− (or on some makes±) button.

When you are confident that you can input negative numbers in association with the
first arithmetic operations, test your skill with Question 1.3.

Question 1.3

Making sure you input all the signs, use your calculator to work out the follow-
ing:

(a) 117− (−38)+ (−286) Answer

(b) (−1624)÷ (−29) Answer

(c) (−123)× (−24) Answer

There is, however, one case in which the calculator does not fully deal with signs,
and that case concerns square roots. The ‘square rootof 9’ is defined as the number
that multiplied by itself gives 9. One such number is 3:

3× 3 = 9

and if you use your calculator to work out
√

9 you will indeed obtain the answer 3.
However, it is also true that

−3× −3 = 9
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So the square root of 9 is either+3 or−3. It is a mathematical convention that the
notation

√
9 means ‘the positive value of the square root of 9’, and this is what your

calculator displays. In cases in which the negative value of the square root might be
relevant this is indicated by use of the sign± (plus or minus) before the square root
sign, i.e.±

√
9.

In Section 1.1.1, the number
√

2 was given as an example of an irrational number.
Check that you can use the square root button on your own calculator to get
√

2 = 1.414 213 562

(You may obtain more or fewer digits depending on the make and model of your
calculator. The fact that the number is irrational means that in any case it never
ends.)

Question

What is

√
5

3
?

Answer
√

5
3
= 0.745 355 922

Be sure to check that you can obtain this value on your own calculator, by ensuring
that the calculator takes the square root of 5beforedividing by 3. Otherwise, you
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will get the positive value of the square root of5
3, which is not the same at all!√

5
3
= 1.290 994 449

1.1.4 The number zero

Zero is a number to be careful about, especially when it is used in multiplication or
division.

If you try multiplying 0 by 6 on your calculator, you will get the answer 0. This
is hardly surprising. If we start off with nothing, it doesn’t matter how often we
multiply it, we still have nothing. The commutativity of multiplication shows that
6× 0 is therefore also equal to 0, and your calculator will confirm this.

The result of multiplying any number by 0 is 0.

In a similar way, dividing 0 by any non-zero number gives zero.

Trying to divide by zero is more problematic. If you enter 6÷ 0 into your calcu-
lator, you will get an error message. To understand why, imagine dividing 6 by
successively smaller and smaller numbers: the answers will get successively larger
and larger. The number by which we’re dividing approaches zero, the result of the
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division becomes too large for the calculator to cope with. Dividing by zero does
not produce a meaningful number and is to be avoided!

1.2 Fractions

With the increasing decimalization of everyday units of measurement, we use frac-
tions less than people used to. Nowadays adding eighths and sixteenths of inches is
about as much as you might need to do, and that only if you still have a ruler, or some
items in a toolbox, marked in inches. However the ability to add, subtract, multiply
and divide using numerical fractions is extremely important inMaths for Science,
because it is the basis for the skill of manipulatingalgebraicfractions which will be
discussed in Chapter 4.

1.2.1 Using fractions

Fractions are characterized by anumerator(the number on top) and adenomina-
tor (the number on the bottom). So in the fraction3

8, the numerator is 3 and the
denominator is 8.
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A pictorial representation, such as that in Figure 1.4, makes it obvious
that it is possible to have fractions which have different numerators and
denominators, but are nevertheless equal. The cake can be divided into
two and the shaded half further sub-divided into two quarters or four
eighths, but half the cake still remains shaded. So the fractions1

2, 2
4 and

4
8 all represent the same amount of the original cake, and can therefore
be described asequivalent fractions.

Figure 1.4 exemplifies the most fundamental rule associated with frac-
tions:

The value of a fraction is unchanged if its numerator and denomi-
nator are both multiplied by the same number, or both divided by
the same number.

In the case of the half cake, numerator and denominator have been mul-
tiplied by 2 to get the equivalent two quarters and again to get the equiv-
alent four eighths. In the following example of equivalent fractions,
other multiplying and dividing numbers have been used:

6
9
=

2
3
=

8
12
=

10
15

1

2

2

4

4

8

Figure 1.4: Sharing out half a
cake.

2
3 is the simplest form in which this fraction may be expressed, i.e. the one in which
the numerator and denominator have the smallest possible value.
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A percentagemeans a ‘number of parts per hundred’, so is equivalent to a fraction
in which the denominator is 100. For example, 50% is the same as50

100 or 1
2

Question

Express 35% as a fraction of the simplest possible form.

Answer

35% is the same as35
100. The value of the faction will be unchanged if the

numerator and denominator are both divided by the same number, and 35 and
100 can both be divided by 5. Doing this gives

35
100
=

7
20

This is the simplest form in which the fraction can be expressed.

One way to convert a fraction to a percentage is to multiply top and bottom of the
fraction by whatever number is required to make the denominator equal to 100. For
instance:

1
4
=

1× 25
4× 25

=
25
100

Hence1
4 is equivalent to 25%.
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In the first few sections of this course, all fractions have been written in the form3
4.

However, in most maths and science texts, you will find that the alternative form,
3/4, is also very common, so you have to become equally comfortable with both
systems and also have to be able to swap between them at will. From now on,
therefore, both notations will be used.

1.2.2 Adding and subtracting fractions

Suppose we want to add the two fractions shown below:

3
4
+

7
16

We cannot just add the 3 and the 7. The 3 represents 3 ‘quarters’ and the 7 represents
7 ‘sixteenths’, so adding the 3 to the 7 would be like trying to add 3 apples and 7
penguins!

In order to add or subtract two fractions, it is necessary for them both to have
the samedenominator(bottom line).
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Fractions with the same denominator are said to have acommon denominator. In
numerical work, it is usually convenient to pick the smallest possible number for
this denominator (the so-calledlowest common denominator). In this example, the
lowest common denominator is 16; we can multiply both top and bottom of the
fraction 3

4 by 4 to obtain the equivalent fraction12
16, so the calculation becomes

3
4
+

7
16
=

12
16
+

7
16
=

19
16

A top heavy fraction such19
16 (i.e. one in which the numerator is larger than the

denominator) is sometimes referred to as animproper fraction. We could also write
the final answer as 1316. This notation is called amixed number(i.e. a combination
of a whole number and a simple fraction). However for most purposes in this course
it is better to leave things as improper fractions.
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If the lowest common denominator is not easy to spot, it is perfectly acceptable to
useany common denominator when adding and subtracting fractions. It may be
most convenient to multiply the top and bottom of the first fraction by the denom-
inator of the second fraction, and the top and bottom of the second fraction by the
denominator of the first. A return to our example may make this clearer:

3
4
+

7
16
=

3× 16
4× 16

+
7× 4
16× 4

=
48
64
+

28
64
=

76
64

However,76
64 is not the simplest form in which this fraction can be expressed. We can

divide both the numerator and the denominator by four to obtain19
16. Reassuringly,

this is the same answer as we obtained before!

This process of dividing the top and bottom of a fraction by the same quantity is
often referred to ascancellation, because it is commonly shown by striking through
the numbers being divided. For example,5

15 can be simplified by dividing the nu-
merator and denominator by 3, and this may be shown as

��5 1

��153
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Worked example 1.2

Evaluate3
2+

1
32, giving the answer in the form of the simplest possible improper

fraction.

Note that the instruction to‘evaluate’simply means ‘calculate the value of’.

Answer

Choosing 2× 32 as the common denominator,

3
2
+

1
32
=

3× 32
2× 32

+
1× 2
32× 2

=
96
64
+

2
64

=
98
64

=
��9849

��6432

This cannot be simplified any further, so

3
2
+

1
32
=

49
32
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Question 1.4

Without using a calculator, evaluate the following, leaving your answers in the
form of the simplest possible fractions.

(a)
2
3
−

1
6

Answer

(b)
1
3
+

1
2
−

2
5

Answer

(c)
5
28
−

1
3

Answer

1.2.3 Manipulating fractions

It is very important to remember that multiplying both numerator and denominator
by the same non-zero number, or dividing both numerator and denominator by the
same non-zero number, are theonly things you can do to a fraction that leave its
value unchanged. Adding the same number to the numerator and denominator will
alter the value of the fraction, as will any other operations. The following question
will help you to convince yourself of this, so it is particularly important that you
should work through it at this point.
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Question 1.5

Take any fraction, say416, and evaluate it as a decimal, using your calculator
if necessary. Now try each of the following operations in turn, using your
calculator to work out the result:

(a) choose any integer and add it to the numerator and
denominator

Answer

(b) subtract the same integer from the numerator and denominatorAnswer

(c) square the numerator and the denominator (i.e. multiply the
numerator by itself, and the denominator by itself)

Answer

(d) take the square root of the numerator and the square root of
the denominator.

Answer

The results you obtained for Question 1.5 confirm that, for example, adding the
same non-zero number to the top and bottom of a fraction changes its value, as
do operations such as taking the square root of the numerator and denominator.
The experience of all calculations of this type can be generalized by saying that
excluding operations involving the integer zero,

A fraction is unchanged by either the multiplication, or the division, of its
numerator and denominator by the same amount. All other operations carried
out on the fraction will alter its value.
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In terms of numerical fractions, this rule may seem fairly obvious. But forgetting
it once the numbers are replaced by symbols is the root cause of many errors in
algebra!

1.2.4 Multiplying fractions

The expression ‘three times two’ just means there are three lots of two (i.e. 2+2+2).
So multiplying by a whole number is just a form of repeated addition. For example,

3× 2 = 2+ 2+ 2

This is equally true if you are multiplying a fraction by a whole number:

3×
4
5
=

4
5
+

4
5
+

4
5
=

12
5

We could write the 3 in the form of its equivalent fraction3
1 and it is then clear that

the same answer is obtained by multiplying the two numerators together and the two
denominators together.

3
1
×

4
5
=

3× 4
1× 5

=
12
5

In fact, this procedure holds good for any two fractions.
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To multiply two or more fractions, multiply the numerators (top lines) together
and also multiply the denominators (bottom lines) together.

So

3
4
×

7
8
=

3× 7
4× 8

=
21
32

Multiplying three fractions together is done by simple extension of the method used
in the previous examples:

7
16
×

7
8
×

3
4
=

7× 7× 3
16× 8× 4

=
147
512
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1.2.5 Dividing fractions

How are we to interpret 4÷ 1
2? The analogy with dividing by an integer may help.

The expression 4÷ 2 asks us to work out how may twos there are in 4 (answer 2).
In exactly the same way, the expression 4÷ 1

2 asks how many halves there are in 4.
Figure 1.5 illustrates this in terms of circles. Each circle contains two half-circles,
and 4 circles therefore contain 8 half-circles. So

4÷
1
2
= 4× 2 = 8

Figure 1.5: Each circle contains two half-circles.
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Figure 1.6: Each half-circle contains two quarter-circles.

Similarly, 1
2 ÷

1
4 asks how many quarters there are in a half. Figure 1.6 illustrates

that:

• each whole circle contains 4 quarter-circles

• each half-circle contains12 × 4 quarter-circles

So

1
2
÷

1
4
=

1
2
× 4 =

1
2
×

4
1
=

1× 4
2× 1

=
4
2
= 2

This may be extended into a general rule

To divide by a fraction, turn it upside down and multiply.
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So

4
3
÷

5
9
=

4
3
×

9
5

=
��3612

��155

=
12
5

Here the cancellation has been done by dividing the numerator and the denominator
of the final answer by 3. However, cancellation could equally well have been carried
out at an earlier stage,

4

��31
×

��93

5
=

12
5

Note that divisions involving fractions are commonly written in several different

ways; the example above might equally well have been expressed as
4
3

/
5
9

or
4/3
5/9

.
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It is always important to remember that an integer is equivalent to a fraction in which
the numerator is equal to that integer and the denominator is equal to 1: for example,
the integer 3 is equivalent to the fraction3

1. So dividing by the integer 3 is equivalent
to dividing by the fraction3

1, and that, according to the general rule about how to
divide by a fraction, is the same as multiplying by the fraction1

3.

Thus
1
2
÷ 3 =

1
2
÷

3
1
=

1
2
×

1
3
=

1× 1
2× 3

=
1
6

In this context, it may be helpful to restate the general rule in terms of a
specific example:

Multiplying by 1
2 is equivalent to dividing by 2.

Dividing by 1
2 is equivalent to multiplying by 2.

The blue box and the cartoon use the integer 2 as the example, but it
could of course be replaced by any other integer: it is equally true to
say that dividing by1

10 is equivalent to multiplying by 10.
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Question 1.6

Work out each of the following, leaving your answer as the simplest possible
fraction:

(a)
2
7
× 3 Answer

(b)
5
9
÷ 7 Answer

(c)
1/6
1/3

Answer

(d)
3
4
×

7
8
×

2
7

Answer

1.3 Powers, reciprocals and roots

1.3.1 Powers

Most people are familiar with the fact that 2× 2 can also be written as 22 (said as
‘two squared’) and 2× 2 × 2 as 23 (said as ‘two cubed’). This shorthand notation
can be extended indefinitely, so 2×2×2×2×2×2 becomes 26 (said as ‘two raised
to the power of six’ or ‘two to the power of six’, or more usually just as ‘two to the
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six’). In these examples, 2 is called thebase numberand the superscript indicates
the number of ‘2’s that have been multiplied together. The superscript number is
variously called theexponent, theindex(plural indices) or thepower. In the rest of
this section, the term exponent will be the one used, because that ties in most closely
with the notation on calculators.

‘Power’ is a slightly confusing term because it is commonly used to denote two
different quantities:

• the value of the superscript number (as in ‘two to the power of six’),

• the complete package of base number and exponent .

The context should make it clear what is meant in any particular example.

In the following example, the base number is 5:

Exponent 1 2 3 4

Power of 5 51 52 53 54

Value 5 25 125 625

If you read this table starting at the right and stepping to the left, each time you take
a step you are subtracting 1 from the number in the top row and dividing the number
in the bottom row by five. On the basis of this pattern, mathematicians extend this
table further to the left by continuing to apply the same ‘rule’ for each step, giving:
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Exponent −3 −2 −1 0 1 2 3 4

Power of 5 5−3 5−2 5−1 50 51 52 53 54

Value 1
125

1
25

1
5 1 5 25 125 625

Firstly, note the extremely important result that 50 = 1.

Any base number raised to the power of zero is equal to 1.

Next, notice that 5−2 = 1
25. But since 25= 52, 1

25 is also
1

52
. So we have developed

a new form of shorthand such that

5−1 =
1
5

5−2 =
1

52
5−3 =

1

53
and so on.

Another way of saying this is that 5−2 is thereciprocalof 52. The reciprocal of any
number is 1 divided by that number. Note that this also works the other way round:

52 is the reciprocal of 5−2. In other words 52 =
1

5−2
.

The system shown above for powers of 5 could be applied to any base number,
and is especially useful when applied to powers of ten, because then it ties in with
our normal system for writing decimal numbers. In the example below, the table is

Back J I 40



Contents �

constructed the other way round to emphasise this:

thousands hundreds tens units point tenths hundredths thousandths

Value 1000 100 10 1 . 0.1 0.01 0.001

Power of 10 103 102 101 100 10−1 10−2 10−3

Exponent 3 2 1 0 −1 −2 −3

In the next chapter, you will see how useful thispowers of ten notationcan be in
scientific work.
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Question 1.7

Without using a calculator, evaluate

(a) 2−2 Answer

(b)
1

3−3
Answer

(c)
1

40
Answer

(d)
1

104
Answer

Your calculator probably has anx2 button, and either anx−1 or a 1/x button, but
to evaluate other powers you will have to use a special ‘powers’ button. On some
calculators this is markedxy, on others it has the symbol∧. To input a negative
exponent, you may have to combine the powers button with the+/− button. Make
sure at this point that you can operate your own calculator to obtain correctly:

54 = 625

5−1 = 0.2 (i.e. 1/5)

5−2 = 0.04 (i.e. 1/25)
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Question 1.8

Use your calculator to evaluate:

(a) 29 Answer

(b) 3−3 Answer

(c)
1

42
Answer

Box 1.2 An intimate knowledge of powers!

Srinivasa Ramanujan (1887–1920), an Indian mathematician of immense tal-
ent, came to England in 1913 at the invitation of the distinguished British math-
ematician, G. H. Hardy. In his biography of Ramanujan, Hardy wrote:

I remember once going to see him when he was lying ill at Putney. I had ridden
in taxi cab number 1729 and remarked that the number seemed to me rather a
dull one, and that I hoped it was not an unfavorable omen. “No,” he replied,
“it is a very interesting number; it is the smallest number expressible as the
sum of two cubes in two different ways.”

Indeed: 1729= 13 + 123 = 93 + 103
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1.3.2 Multiplying and dividing with powers

In scientific calculations, it is very common to have to multiply and divide by pow-
ers, especially powers of ten. It is therefore extremely important to become confi-
dent in manipulating powers in this way, both with and without a calculator. How-
ever, the rules for doing so are quite easy to work out.

Suppose we wanted to multiply 103 by 102. We could write this out more fully as

103 × 102 = (10× 10× 10)× (10× 10)= 105

The exponent of the result (5) is the same as the sum of the two original exponents
(3+ 2).

The process is of course not limited to powers of ten. It works for any base number.
For example:

22 × 24 = (2× 2)× (2× 2× 2× 2) = 26

Again, the exponent of the result (6) is the same as the sum of the two original
exponents (2+ 4).

The process also works for negative exponents. For example, since 5−2 =
1

52

53 × 5−2 = (5× 5× 5)×
1

5× 5
= 5 = 51
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Adding the exponents here again gives the exponent of the answer:

3+ (−2) = 1

In science and maths, general rules are often stated in terms of symbols. We could
express the rule we have discovered through the above examples in the much more
general form

Na × Nb = Na+b (1.1)

whereN represents any base number anda andb represent any exponents

Quantities such as those represented by the symbolsN, a andb, which can take any
value we choose, are calledvariables.

The example involving a negative exponent we looked at previously shows immedi-
ately how to extend the rules to cover situations in which we want to divide powers.
We had:

53 × 5−2 = 53+(−2) = 51 = 5

But as you will remember fromSection 1.2.5, multiplying by a fraction is the same
as dividing by that fraction turned upside down (i.e. its reciprocal). So multiplying
by 5−2 is the same as dividing by its reciprocal (52), and we can write

53 ÷ 52 = 53−2 = 51 = 5
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This time, instead of adding the exponents, we have subtracted the second from the
first. More generally,

Na ÷ Nb = Na−b (1.2)

whereN represents any base number anda andb represent any exponents

Question 1.9

Without using a calculator, simplify the following to the greatest possible ex-
tent (leaving your answer expressed as a power).

(a) 230× 22 Answer

(b) 325× 3−9 Answer

(c) 102/103 Answer

(d) 102/10−3 Answer

(e) 10−4 ÷ 102 Answer

(f)
105 × 10−2

103
Answer
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1.3.3 Powers of powers

Consider now what happens when a number which is already raised to a power, for
example 32, is again raised to a power. Suppose for example 32 is itself cubed, so

that we have
(
32

)3
. Writing this out in full shows that(

32
)3
= (32) × (32) × (32) = (3× 3)× (3× 3)× (3× 3) = 36

This time the exponents have been multiplied together to obtain the exponent of the
answer: 3× 2 = 6.

More generally,

(
Nm)n

= N m× n (1.3)

whereN represents any base number andm andn represent any exponents

Equation 1.3 applies for all values ofN, m andn whether positive or negative. So
for example:(

1

1020

)3

=
(
10−20

)3
= 10(−20)×3 = 10−60 =

1

1060
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This is equivalent to saying that(
1

1020

)3

=
13(

1020)3 = 1

1020×3
=

1

1060

Question 1.10

Without using a calculator, simplify the following to the greatest possible ex-
tent, leaving your answer expressed as a power.

(a)
(
416

)2
Answer

(b)
(
5−3

)2
Answer

(c)
(
1025

)−1
Answer

(d)

(
1

33

)6

Answer
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1.3.4 Roots and fractional exponents

Finally, how are we to interpret a power with a fractional exponent, such as 21/2?
The rule for multiplying powers gives a clue. Suppose we were to multiply 21/2 by
itself. ApplyingEquation 1.1suggests that:

21/2 × 21/2 = 2
(
1
2+

1
2

)
= 21 = 2

But the positive number that multiplied by itself gives 2 is more commonly written
as
√

2. The two shorthands, 21/2 and
√

2 are often used interchangeably.

Similarly, the number that multiplied by itself three times gives 125 is sometimes
written as

3√
125 (said as ‘the cube root of 125’), but more commonly written in

science as (125)1/3. This number is clearly 5, and you should notice the correspon-
dence:

53 = 125 and conversely (125)1/3 = 5

More generally,

The positiventh root of a numberN can be written as eithern
√

N or asN1/n

In practice, the first type of notation is only used whenn = 2 orn = 3.
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Worked example 1.3

Without using a calculator, evaluate

(
21/2

)7

(
23)1/2

Answer

FromEquation 1.3(
21/2

)7
= 2

1
2×7 = 27/2 and

(
23

)1/2
= 23×1

2 = 23/2

so(
21/2

)7

(
23)1/2 = 27/2

23/2

FromEquation 1.2

27/2

23/2
= 27/2 − 23/2

= 24/2

= 22

= 4
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Equation 1.3can now be used to bring meaning to a number like 272/3.

Since2
3 =

1
3 × 2, applyingEquation 1.3shows that 272/3 = (271/3)2 i.e. the square

of the cube root of 27. The cube root of 27 is 3, so 272/3 is equal to 32 or 9.

Question 1.11

Without using a calculator, simplify the following to the greatest possible ex-
tent, expressing your answer as an integer or a decimal.

(a)
(
24

)1/2
Answer

(b)
√

104 Answer

(c) 1003/2 Answer

(d) (125)−1/3 Answer
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1.4 Doing calculations in the right order

In Section 1.1.2, brackets were used to make it clear that the minus signs were
tied to particular numbers. Brackets can also be used to show the order in which
calculations are to be performed.

If a calculation were written as

3+ 2× 5 =

should one do the addition first or the multiplication first? Try entering this expres-
sion into your calculatorexactly as it is written. Do you get the answer 13? If so,
your calculator knows the convention adopted by mathematicians everywhere that
multiplication takes precedence over addition. The calculator has ‘remembered’ the
3 until it has worked out the result of multiplying 2 by 5 and has then added the 3 to
the 10. According to the rules all mathematicians follow, if you wanted to add the 3
and the 2 first and then multiply that result by 5 you would have to write

(3+ 2)× 5 = 25

Again, check that you can use the bracket function on your calculator to enter this
expression exactly as written on the left-hand side of this equation and that you
obtain the correct answer.

There are similar rules that govern the order of precedence of other arithmetic oper-
ations, which are neatly encapsulated in the mnemonic BEDMAS.
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Order of arithmetic operations

Brackets take precedence over
Exponents. Then. . .
Division and
Multiplication must be done before. . .
Addition and
Subtraction.

So if we write−3 − 12÷ 6, the BEDMAS rules tell us we must do the division
(12÷ 6 = 2) before carrying out the subtraction (−3 − 2 = −5). Try this on your
calculator too; you may have to use the+/− button to input the−3.

Many people, including scientists, find it hard to visualize the rules in a string of
numbers. They often opt to use brackets to make things clear, even when those
brackets simply reinforce the BEDMAS rules. So one could choose to write

(12÷ 3)+ 2 = 6

There is nothing wrong with adding such ‘redundant’ brackets — they are simply
there for clarity and can even be entered into your calculator (try it). Far better to
have a few additional brackets than to be confused about the order in which the
calculation must be carried out!
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There is one final quirk associated with the use of brackets. In mathematics, the
multiplication sign is often left out (though its presence is implied) between numbers
and brackets, and between brackets and brackets. So

2(3+ 1) = 2× (3+ 1) = 8

and

(1+ 1)(4+ 3) = 2× 7 = 14

Some calculators ‘understand’ this convention and some do not. Check your own
calculator carefully using the two examples above.

The next operation in precedence after brackets involves exponents. If there are
powers in the expression you are evaluating, deal with any brackets first, then work
out the powers before carrying out any other arithmetical operations.
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Question

Evaluate 2× 32 and (2× 3)2

Answer

In the first case, there are no brackets so the exponent takes precedence:

2× 32 = 2× 9 = 18

In the second case, the bracket takes precedence:

(2× 3)2 = 62 = 36
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Question 1.12

Evaluate (preferably without using your calculator):

(a) 35− 5× 2 Answer

(b) (35− 5)× 2 Answer

(c) 5(2− 3) Answer

(d) 3× 22 Answer

(e) 23 + 3 Answer

(f) (2+ 6)(1+ 2) Answer
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1.5 Learning outcomes for Chapter 1

After completing your work on this chapter you should be able to:

1.1 carry out addition, subtraction, multiplication and division operations
involving negative numbers;

1.2 add two or more fractions;

1.3 subtract one fraction from another;

1.4 multiply a fraction by an integer or by another fraction;

1.5 divide a fraction by a non-zero integer or by another fraction;

1.6 evaluate powers involving any base and positive, negative or fractional
exponents;

1.7 multiply or divide two powers involving the same base;

1.8 evaluate any given power of a number already raised to a power.
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Measurement in Science 2
Observation, measurement and the recording of data are central activities in science.
Speculation and the development of new theories are crucial as well, but ultimately
the predictions resulting from those theories have to be tested against what actu-
ally happens and this can only be done by making further measurements. Whether
measurements are made using simple instruments such as rulers and thermometers,
or involve sophisticated devices such as electron microscopes or lasers, there are
decisions to be made about how the results are to be represented, what units of mea-
surements will be used and the precision to which the measurements will be made.
In this chapter we will consider these points in turn. Then in Chapter 3 we will go
on to think about how measurements of different quantities may be combined, and
what significance should be attached to the results.
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2.1 Large quantities and small quantities

Scientists frequently deal with enormous quantities — and with tiny ones. For ex-
ample it is estimated that the Earth came into being about four and a half thousand
million years ago. It took another six hundred million years for the first living things
— bacteria — to appear. Bacteria are so small that they bear roughly the same pro-
portion to the size of a pinhead as the size that pinhead bears to the height of a
four-year old child!

In the previous chapter, we saw how convenient powers of ten could be as a way of
writing down very large or very small numbers. For example,

106 = 1 000 000 (a million) and 10−3 = 1/1000= 0.001 (a thousandth)

This shorthand can be extended to any quantity, simply by multiplying the power of
ten by a small number. For instance,

2× 106 = 2× 1 000 000= 2 000 000 (two million)

(The quantity on the left-hand side would be said as ‘two times ten to the six’.)

Similarly,

3.5× 106 = 3 500 000 (three and a half million)

7× 10−3 = 7/1000= 0.007 (seven-thousandths)
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Scientists make so much use of this particular shorthand that it has come to be
known asscientific notation(although in maths texts you may also find it referred
to asstandard index formor standard form.)

A quantity is said to be expressed in scientific notation if its value is written as
a number multiplied by a power of ten. The number can be a single digit or a
decimal number, but must be greater than or equal to 1 and less than 10.

Note the restriction: 75× 102 is not in scientific notation and nor is 0.75× 104,
though these are both equivalent to 7.5× 103 which is in scientific notation.

Scientific notation can be defined more succinctly by making use of some of the
mathematical symbols denoting the relative sizes of quantities. These symbols are:

> greater than (e.g. 3> 2);

≥ greater than or equal to (e.g.a ≥ 4 means that the quantitya may take the
exact value 4 or any value larger than 4);

< less than;

≤ less than or equal to.

Note that ‘a ≥ 4’ and ‘4≤ a’ convey exactly the same information about the quantity
a.

Using these symbols, scientific notation may be defined as a notation in which the
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value of a quantity is written in the forma× 10n, wheren is an integer and 1≤ a <
10.

To move from scientific notation to integers or to decimal notation, first deal with
the power of ten, then carry out the multiplication or division.

Worked example 2.1

Express the following numbers as integers or in decimal notation:

(a) 4.53× 103

(b) 8.371× 102

(c) 6.4× 10−3

Answer

(a) 4.53× 103 = 4.53× 1000= 4530

(b) 8.371× 102 = 8.371× 100= 837.1

(c) 6.4× 10−3 = 6.4×
1

1000
=

6.4
1000

= 0.0064

Note that, as in Worked example 2.1, a requirement to express a quantity in a dif-
ferent form simply involves taking the quantity and writing down its equivalent in
the new form. You may do this in one step, or write down intermediate steps as was

Back J I 61



Contents �

done in the worked example.

Question 2.1

Without using your calculator, express the following numbers as integers or in
decimal notation. Note that (a) and (b) are in scientific notation, while (c) is
not.

(a) 5.4× 104 Answer

(b) 2.1× 10−2 Answer

(c) 0.6× 10−1 Answer

Moving from an integer or decimal notation to scientific notation is equivalent to
deciding what power of ten you need to multiply or divide by in order to convert the
number you are starting with to a number that lies between 1 and 10.
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Worked example 2.2

Express the following numbers in scientific notation:

(a) 356 000

(b) 49.7× 104

(c) 0.831

Answer

(a) 356 000= 3.56× 100 000= 3.56× 105

(b) 49.7× 104 = 4.97× 10× 104 = 4.97× 10(1+4) = 4.97× 105

(c) 0.831=
8.31
10
= 8.31× 10−1

In this worked example, all the steps have been written out in full. You may be able
to manage with fewer steps in your own calculations — just use as many or as few
as you feel comfortable with in order to get the right answer!
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Question 2.2

Without using your calculator, express the following numbers in scientific no-
tation:

(a) 215 Answer

(b) 46.7 Answer

(c) 152× 103 Answer

(d) 0.000 0876 Answer

It is only too easy to lose track of the sizes of things when using scientific notation,
so you should make a habit of thinking carefully about what the numbers mean,
bearing in mind that numbers may be positive or negative. For example:

−1× 1010 is a very large negative number;

−1× 10−10 is a very small negative number;

1× 10−10 is a very small positive number.

Figure 2.1places on the number line some numbers in scientific notation. You may
find this helps you to visualize things.
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We started this section thinking about the early Earth and the first appearance of life.
Using scientific notation, the age of the Earth can be neatly expressed as 4.6× 109

years and the size of one type of those early bacteria as 1.2×10−6 metres. Of course
the value we come up with for such sizes will depend on the units in which we
choose to make the measurements. If we were measuring the diameter of the Moon,
we could elect to express it in metres or in kilometres, or even in miles.

2.2 Units of measurement

In the UK, two systems of units are in common use. We still use old imperial mea-
sures for some things: milk is sold in pints and signposts indicate distances in miles.
But for many other everyday measurements metric units have been adopted: we buy
petrol in litres and sugar in kilogram bags. A great advantage of metric units is that
we no longer have to convert laboriously from imperial units, such as gallons, feet
and inches, in order to trade with continental Europe. Also, calculations are easier
in a metric (i.e. decimal) system! Similar advantages were the main consideration
when in 1960 an international conference formally approved a standard set of sci-
entific units, thus replacing at a stroke the many different systems of measurement
that had been used up until then by scientists of different nationalities. This ‘univer-
sal’ system for scientific measurement is referred to asSI units(short for Système
International d’Unités).
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In SI, there are seven ‘base units’, which are listed in Box 2.1. Surprising as it
may initially seem, every unit for every other kind of quantity (speed, acceleration,
pressure, energy, voltage, heat, magnetic field, properties of radioactive materials,
indeed whatever you care to name) can be made up from combinations of just these
seven base units. For instance, speed is measured in metres per second. You will
find some other combinations of base units described in Chapter 3. In this course we
shall work mainly with the familiar base units of length, mass, time and temperature,
and some of their combinations, but it is worth knowing that the other base units
exist as you may meet them in other courses.

Box 2.1 The SI base units

Physical quantity Name of unit Symbol for unit
length metre m
time second s
mass kilogram kg
temperature kelvin K
amount of substance mole mol
electric current ampere A
luminous intensity candela cd
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Most of these base units relate to physical descriptions that apply universally.
The SI base unit of time, the second, is defined as the period over which
the waves emitted by caesium atoms under specific conditions cycle exactly
9192 631 770 times. Then the SI base unit of length, the metre, is defined by
stating that the speed of light in a vacuum, which is a constant throughout the
Universe, is exactly 299 792 458 metres per second.

The SI base unit of mass, the kilogram, is the only fundamental unit that is
defined in terms of a specific object. The metal cylinder which constitutes the
world’s ‘standard kilogram’ is kept in France. Note that the kilogram is actually
the standard unit ofmass, not of weight. In scientific language, the weight of
an object is the downward pull on that object due to gravity, whereas its mass
is determined by the amount of matter in it. When astronauts go to the Moon,
where the pull of gravity is only about one-sixth of that on Earth, their mass
remains the same but their weight drops dramatically! And in zero gravity, they
experience a condition known as ‘weightlessness’.

The SI base unit of temperature is the kelvin, which is related to the everyday
unit of temperature, the degree Celsius:

(temperature in kelvin)= (temperature in degrees Celsius)+ 273.15

(You will find some of the rationale for the kelvin scale of temperature in Chap-
ter 5.)
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The amount of a pure substance is expressed in the SI base unit of the mole.
Whatever the smallest particle of a given substance is, one mole of that sub-
stance will contain 6.02211367×1023 (known as Avogadro’s number) of those
particles. A mole of graphite contains Avogadro’s number of carbon atoms.
Carbon dioxide is made up of molecules in which one carbon atom is joined to
two oxygen atoms, and a mole of carbon dioxide contains Avogadro’s number
of these molecules.

You will have noticed that while the base unit of length is the metre, not the kilome-
tre, the base unit of mass is the kilogram, not the gram.

It is important to realize that, although in everyday usage it is common to say that
you ‘weigh so many kilos’, there are two things wrong with this usage from the
scientific point of view. First, as noted inBox 2.1, the kilogram is not a unit of
weight, but a unit of mass. (The SI unit of weight, the newton, will be discussed in
Chapter 3.) Secondly, in scientific language, ‘kilo’ is never used as an abbreviation
for kilogram, in the sense of the everyday phrase ‘he weighs so many kilos’. In
science, kilo is always used as aprefix, denoting a thousand: one kilometre is a
thousand metres, one kilogram is a thousand grams.

Another prefix with which everybody is familiar is ‘milli’, denoting a thousandth.
One millimetre, as marked on ordinary rulers, is one-thousandth of a metre; or put
the other way round, a thousand millimetres make up a metre. There are many other
prefixes in use with SI units, all of which may be applied to any quantity. Like kilo
and milli, the standard prefixes are based on multiples of 1000 (i.e. 103). The most
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commonly used prefixes are listed in Box 2.2.

It is important to write the symbols for units and their prefixes in the correct case. So
k (lower case) is the symbol for the prefix ‘kilo’ whilst K (upper case) is the symbol
for the Kelvin; m (lower case) is the symbol for the metre or the prefix ‘milli’ whilst
M (upper case) is the symbol for the prefix ‘mega’.

Box 2.2 Prefixes used with SI units

prefix symbol multiplying factor
tera T 1012 = 1000 000 000 000
giga G 109 = 1000 000 000
mega M 106 = 1000 000
kilo k 103 = 1000
– – 100 = 1
milli m 10−3 = 0.001
micro µ∗ 10−6 = 0.000 001
nano n 10−9 = 0.000 000 001
pico p 10−12 = 0.000 000 000 001
femto f 10−15 = 0.000 000 000 000 001
* The Greek letterµ is pronounced ‘mew’.
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The following data may help to illustrate the size implications of some of the
prefixes:

• the distance between Pluto (the furthest planet in the Solar System) and
the Sun is about 6 Tm,

• a century is about 3 Gs,

• eleven and a half days contain about 1 Ms,

• the length of a typical virus is about 10 nm,

• the mass of a typical bacterial cell is about 1 pg.

Astronomers have long been making measurements involving very large quan-
tities, but scientists are increasingly probing very small quantities. ‘Femto-
chemistry’ is a rapidly developing area, which involves the use of advanced
laser techniques to investigate the act of chemical transformation as molecules
collide with one another, chemical bonds are broken and new ones are formed.
In this work, measurements have to be made on the femtosecond timescale.
Ahmed H. Zewail (whose laboratory at the California Institute of Technology
in Pasadena is often referred to as ‘femtoland’) received the 1999 Nobel Prize
in Chemistry for his development of this new area.

Although scientific notation, SI units and the prefixes inBox 2.2are universal short-
hand for all scientists, there are a few instances in which other conventions and units
are adopted by particular groups of scientists for reasons of convenience. For ex-

Back J I 70



Contents �

ample, we have seen that the age of the Earth is about 4.6 × 109 years. One way
to write this would be 4.6 ‘giga years’ but geologists find millions of years a much
more convenient standard measure. They even have a special symbol for a million
years: Ma (where the ‘a’ stands for ‘annum’, the Latin word for year). So in Earth
science texts you will commonly find the age of the Earth written as 4600 Ma. It
won’t have escaped your notice that the year is not the SI base unit of time — but
then perhaps it would be a little odd to think about geological timescales in terms of
seconds!

A few metric units from the pre-SI era also remain in use. In chemistry courses,
you may come across the ångström (symbol Å), equal to 10−10 metres. This was
commonly used for the measurement of distances between atoms in chemical struc-
tures, although these distances are now often expressed in either nanometres or pi-
cometres. Other metric but non-SI units with which we are all familiar are the litre
(symbol l) and thedegree Celsius(symbol◦C).

There are also some prefixes in common use, which don’t appear inBox 2.2because
they don’t conform to the ‘multiples of 1000’ rule, but that when applied to particu-
lar units happen to produce a very convenient measure. One you will certainly have
used yourself iscenti(hundredth): rulers show centimetres (hundredths of a metre)
as well as millimetres, and standard wine bottles are marked as holding 75 cl. One
less commonly seen isdeci (tenth), but that is routinely used by chemists in mea-
suring concentrations of chemicals dissolved in water, or other solvents, as you will
see in Chapter 3. In the next section you will also come across the decibel, which is
used to measure the loudness of sounds.
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Worked example 2.3

Diamond is a crystalline form of carbon in which the distance between adja-
cent carbon atoms is 0.154 nm. What is this interatomic distance expressed in
picometres?

Answer

1 pm= 10−12 m so

1 m=
1

10−12
pm= 1012 pm

1 nm= 10−9 m so

1 nm= 10−9 × 1012 pm

= 10−9+12 pm

= 103 pm

0.154 nm= 0.154× 103 pm

= 154 pm
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Question 2.3

Using scientific notation, express:

(a) 3476 km (the radius of the Moon) in metres. Answer

(b) 8.0 µm (the diameter of a capillary carrying blood in the body)
in nm,

Answer

(c) 0.8 s (a typical time between human heartbeats) in ms. Answer
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2.3 Scales of measurement

In thinking about the sizes of things, it is sometimes useful to do so in quite rough
terms, just to the nearest power of ten. For example, 200 is nearer to 100 than it is
to 1000, but 850 is nearer to 1000 than it is to 100. So if we were approximating
to the nearest power of ten we could say 200 was roughly 102, but 850 was roughly
103. This process is called reducing the numbers to the nearestorder of magnitude.

The approximate value of a quantity expressed as the nearest power of ten to
that value is called the order of magnitude of the quantity.

The easiest way to work out the order of magnitude of a quantity is to express it
first in scientific notation in the forma× 10n. Then ifa is less than 5, the order of
magnitude is 10n. But if a is equal to or greater than 5, the power of ten is rounded
up by one, so the order of magnitude is 10n+1. For example, the diameter of Mars is
6762 km. This can be written as 6.762× 103 km, and because 6.762 is greater than
5, the diameter of Mars is said to be ‘of order 104 km’.

This is normally written as:

diameter of Mars∼ 104 km

where the symbol∼ denotes ‘is of order’.
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Question

What is the order of magnitude of the mass of the Earth, 6.0× 1024 kg?

Answer

Mass of the Earth∼ 1025 kg (since 6.0 is greater than 5, the power of ten has
been rounded up).

Question

What is the order of magnitude of the mass of Jupiter, 1.9× 1027 kg?

Answer

Mass of Jupiter∼ 1027 kg (since 1.9 is less than 5, the power of ten remains
unchanged).
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Question

What is the order of magnitude of the average lifetime of unstable ‘sigma plus’
particles, 0.7× 10−10 s?

Answer

Particle lifetime= 0.7× 10−10 s

= 7× 10−11 s

∼ 10(−11+1) s
Since 7 is greater than 5,
the power of ten must be
rounded up

∼ 10−10 s
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The phrase ‘order of magnitude’ is also quite commonly used to compare the sizes
of things, e.g. a millimetre is three orders of magnitude smaller than a metre.

Worked example 2.4

To the nearest order of magnitude, how many times more massive is Jupiter
than the Earth?

Answer

We had:

mass of Jupiter∼ 1027 kg

and

mass of Earth∼ 1025 kg

so

mass of Jupiter
mass of Earth

∼
1027

1025
∼ 10(27−25) ∼ 102

Jupiter is two orders of magnitude (i.e. roughly 100 times) more massive than
the Earth.
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Question 2.4

What is the order of magnitude of the following measurements?

(a) The distance between Pluto (the furthest planet in the Solar
System) and the Sun: five thousand nine hundred million kilo-
metres.

Answer

(b) The diameter of the Sun, given that its radius is 6.97× 107 m. Answer

(c) 2π. Answer

(d) The mass of a carbon dioxide molecule: 7.31× 10−26 kg. Answer

Sophisticated instrumentation now allows scientists to measure across 40 orders of
magnitude, as shown inFigure 2.2. If you turn back toFigure 1.2, you will see
that the scale there is quite different to that in Figure 2.2. On the thermometer,
the interval between marked points was always the same, with marked points at
−0.1,0,0.1,0.2, etc. In other words, each step from one division to the next on the
scale represented theaddition or subtractionof a fixed amount (0.1 in that case).
This kind of scale is calledlinear. In Figure 2.2, on the other hand, each step involves
multiplication or divisionby a fixed power of ten (102 in this particular case). As a
result, the intervals between divisions are all different. This kind of scale is called
logarithmic. The next question allows you to investigate some of the properties of
this type of scale.
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Question 2.5

Use information fromFigure 2.2to answer the following questions.

(a) What is the difference in value between: Answer

(i) the tick marks at 10−2 m and 100 m;

(ii) the tick marks at 100 m and 102 m, and

(iii) the tick marks at 102 m and 104 m?

(b) Calculate to the nearest order of magnitude, how many times
taller than a child is Mount Everest.

Answer

(c) Calculate to the nearest order of magnitude, how many typical
viruses laid end to end would cover the thickness of a piece of
paper. (Hint: you may find it helpful to look back atWorked
example 2.4.)

Answer
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2.3.1 Logarithmic scales in practice

In Figure 2.2, a logarithmic scale was used for the purposes of display, and the
power of ten for the multiplying factor (102) was chosen because it was the one that
best fitted the page. In drawing diagrams and graphs we are always free to choose
the scale divisions. However, logarithmic scales are used in a number of fields to
measure quantities that can vary over a very wide range. In such cases, an increase
or decrease of one ‘unit’ always represents a ten-fold increase or decrease in the
quantity measured. The following sections give two examples.

Sound waves

Thedecibel(symbol dB) is the unit used to measure the relative loudness of sounds.
The ‘intensity’ of a sound is related to the square of the variation in pressure as
the sound wave passes through the air, and the range of intensities that people can
detect is enormous. The sound that just causes pain is 1012 times more intense than
the sound that is just audible! To deal with this huge range, a logarithmic scale for
loudness was devised, according to which every 10 dB (or ‘1 B’) increase in sound
level is equivalent to a 10-fold increase in intensity. The decibel is also a convenient
measure because a sound level of 1 dB is just within the limit of human hearing, and
a change of 1 dB is about the smallest difference in sound that the ear can detect.
(SeeFigure 2.3.)
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Earthquakes

The Richter scaledescribes the magnitude of earthquakes. An instrument called
a seismometer is used to measure the maximum ground movement caused by the
earthquake, and a correction factor is applied to this reading to allow for the distance
of the seismometer from the site of the earthquake. Seismometers are very sensi-
tive and can detect minute amounts of ground movement (they have to be shielded
from the effects caused just by people walking near them), but some earthquakes
can produce ground movements millions of times greater than the minimum de-
tectable limit. To cope with this huge variation, the Richter scale is logarithmic: an
increase of one unit on the scale implies a ten-fold increase in the maximum ground
movement. A magnitude 2 earthquake can just be felt as a tremor. A magnitude 3
earthquake produces 10 times more ground motion than a magnitude 2 earthquake.
Damage to buildings occurs at magnitudes in excess of 6. The three largest earth-
quakes ever recorded (in Portugal in 1775, in Columbia in 1905 and in Japan in
1933) each had a Richter magnitudes of 8.9.
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Worked example 2.5

A whisper corresponds to a sound level of about 20 dB, and a shout to a level
of about 80 dB. How much greater is the intensity of a shout compared to that
of a whisper?

Answer

The increase in sound level is

80 dB− 20 dB= 60 dB

This may be expressed as (10 dB+ 10 dB+ 10 dB+ 10 dB+ 10 dB+ 10 dB),
andeach10 dB increase corresponds to multiplying the intensity by 10.

So the intensity of a shout is (10× 10× 10× 10× 10× 10)= 106 times greater
than a whisper!

Question 2.6 Answer

How much more ground movement is there in an earthquake measuring 7 on
the Richter scale compared to one measuring 3?

The basis of logarithmic scales will be discussed in Chapter 7.
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2.4 How precise are the measurements?

Scientists are always trying to get better and more reliable data. One way of getting
a more precise measurement might be to switch to an instrument with a more finely
divided scale. Figure 2.4 shows parts of two thermometers placed side by side to
record the air temperature in a room.

°C

°C

A

B

2019 21 22 23 24 25

18 1917

26 27

20 21 22 23 24 25

Figure 2.4: Parts of two thermometers A and B, measuring the air temperature in
the same place.

The scale on thermometer A is quite coarse. The marked divisions represent integer
numbers of degrees. On this scale we can see that the temperature is between 21◦C
and 22◦C. I might estimate it as 21.7 ◦C, but somebody else could easily record it
as 21.6 ◦C or 21.8 ◦C. So there is some uncertainty in the first decimal place, and
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certainly there is no way we could attempt to guess the temperature to two decimal
places using this particular thermometer.

Thermometer B has a finer scale, with divisions marked every 0.1 ◦C. Now we can
clearly see that the temperature is between 21.6 ◦C and 21.7 ◦C. I might read it as
21.63 ◦C, but a second person could plausibly read it as 21.61 ◦C or 21.65 ◦C. With
this scale we are sure of the first decimal place but uncertain of the second.

When quoting the result of a measurement, you should never quote more digits than
you can justify in terms of the uncertainty in the measurement. The number of
significant figuresin the value of a measured quantity is defined as the number of
digits known with certainty plus one uncertain digit. With thermometer A we could
be sure of the 21 (two digits), but were uncertain about the digit in the first decimal
place, so we can quote a reading to three significant figures, as 21.7 ◦C (or 21.6 ◦C
or 21.8 ◦C). With thermometer B it was the fourth digit that was uncertain, so we
can quote our reading to four significant figures, as, for example, 21.64 ◦C.

Question 2.7 Answer

How many significant figures are quoted in each of the following quantities:
1221 m; 223.4 km; 1.487 km?

Question 2.7 emphasizes that significant figures mustn’t be confused with the num-
ber of decimal places. After all, if you had measured the length of something as
13 mm, you wouldn’t want the precision of your result to be changed just because
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you converted the measurement to centimetres. Whether you write 13 mm or 1.3 cm
you are expressing the result of your measurement to two significant figures. Now
suppose you convert to metres: 0.013 m. The uncertainty in your result still hasn’t
changed, so this shows thatleading zeroes in decimal numbers do not count as sig-
nificant figures. Scientific notation is helpful in this regard. Expressing the result as
1.3× 10−2 m makes it very obvious that there are two significant figures.

Another circumstance in which one has to be careful about not using unjustified
precision occurs when the results of measurements are used as the basis for calcula-
tions. Suppose we had measured the diameter of a circular pattern to two significant
figures and obtained the result 3.3 cm. If we then needed to calculate the radius
of the circle, it might be tempting simply to divide the diameter by 2 and say ‘the
radius of the pattern is 1.65 cm’. But 1.65 cm implies that the value is known to
three significant figures! So we need to round off the figure in some way, to express
the fact that the last significant digit in this particular case is the first digit after the
decimal point. The usual rule for doing this is to leave the last significant digit un-
changed if it would have been followed by a digit from 0 to 4, and to increase it by
one if it would have been followed by a digit from 5 to 9. To two significant figures
our circular pattern therefore has a radius of 1.7 cm. The issues involved in dealing
with significant figures in more complex calculations are discussed in Chapter 3.

Scientific notation also shows up the need for care in dealing with very large num-
bers. The speed of light in a vacuum (the constantc in Einstein’s equationE =
mc2 is, to six significant figures, 299 792 kilometres per second. Remembering the
rounding rule, this can quite properly be written as 3× 105 kilometres per second
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(one significant figure), or 3.00× 105 kilometres per second (three significant fig-
ures). But it would be misleading to write it as 300 000 kilometres per second,
because that could imply that all six digits are significant.

One of the advantages of using scientific notation is that it removes any ambigu-
ity about whether zeroes at theendof a number are significant or are simply place
markers. For example, if a length is measured to just one significant figure as 8 m,
how should the equivalent value in centimetres be expressed? It would be mislead-
ing to write 800 cm, since that could imply the value is known to three significant
figures. The only way out of this difficulty is to use scientific notation: writing
8× 102 cm makes it clear that the quantity is known only to one significant figure,
in line with the precision of the original measurement.

Question

If the speed of light through glass is quoted as 2.0×108 metres per second, how
many significant figures are being given?

Answer

Final zeroesare significant, so the speed is being given to two significant fig-
ures.

Back J I 86



Contents �

Question

Neon gas makes up 0.0018% by volume of the air around us. How many sig-
nificant figures are being given in this percentage?

Answer

Leading zeroes arenot significant, so this value is also being given to two
significant figures.

Worked example 2.6

The average diameter of Mars is 6762 km. What is this distance in metres,
expressed to three significant figures?

Answer

The only way to express this quantity unambiguously to fewer than the four
significant figures originally given is to use scientific notation.

6762 km= 6.762× 103 km

= 6.762× 103 × 103 m

= 6.762× 10(3+3) m
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Thus 6762 km= 6.762× 106 m.

The final digit is a 2, so no rounding up is required and the average diameter of
Mars is 6.76× 106 m to three significant figures.

Question 2.8

Express the following temperatures to two significant figures:

(a) −38.87 ◦C (the melting point of mercury, which has the un-
usual property for a metal of being liquid at room temperature);

Answer

(b) −195.8 ◦C (the boiling point of nitrogen, i.e. the temperature
above which it is a gas);

Answer

(c) 1083.4 ◦C (the melting point of copper). Answer
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In the following chapter and in your future studies of science generally, you will
be doing lots of calculations with numbers in scientific notation, and will also be
expected to quote your results to appropriate numbers of significant figures. Chapter
3 will discuss the efficient way to input scientific notation into your calculator, and
how to interpret the results.

2.5 Learning outcomes for Chapter 2

After completing your work on this chapter you should be able to:

2.1 convert quantities expressed as integers or in decimal notation to scientific
notation and vice versa;

2.2 use prefixes in association with the SI base units and convert between prefixes;

2.3 express a given quantity as an order of magnitude;

2.4 state the number of significant figures in any given quantity;

2.5 express a given quantity to any stipulated number of significant figures.
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Calculating in Science 3
There comes a point in science when simply measuring is
not enough and we need tocalculatethe value of a quantity
from values for other quantities that have been measured
previously. Take, for example, the piece of granite shown in
Figure 3.1. We can measure the lengths of its sides and its
mass. With a little calculation we can also find its volume,
its density, and the speed at which seismic waves will pass
through a rock of this type following an earthquake.

This chapter looks at several scientific calculations, and in
the process considers the role of significant figures, scien-
tific notation and estimating when calculating in science. In
addition, it introduces unit conversions and the use of for-
mulae and equations. Figure 3.1: A specimen of granite.
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3.1 Calculating area; thinking about units and significant
figures

Suppose we want to find the area of the top of the granite spec-
imen shown inFigure 3.1. The lengths of its sides, measured
in centimetres, are shown in Figure 3.2, and the area of a rect-
angle is given by

area of rectangle= length× width

Thus the area of the top of the granite is

area= 8.4 cm× 5.7 cm

Multiplying the two numbers together gives 47.88. However,
if given as a value for the area, this would be incomplete and
incorrectly stated for two reasons.

1 No units have been given.

2 The values for length and width which we’ve used are each
given to two significant figures, but 47.88 is tofour signifi-
cant figures. This is too many.

Figure 3.2: The lengths of the sides of
the specimen of granite.
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3.1.1 Units in calculations

The length and the width of the specimen of granite aren’t just
numbers, but physical quantities, with units. The area — the
result of multiplying the length by the width — is a physical
quantity too and it should also have units. The units which have
been multiplied together are cm× cm, which can be written as
(cm)2, or more commonly as cm2. In fact any unit of length
squared will be a unit of area. Conversely, a value given for
area shouldalwayshave units of (length)2.

All measurements should be given with appropriate units,
and when performing calculations the units of the answer
must always be consistent with the units of the quantities
you input.

Care needs to be taken when multiplying together two lengths which have been
measured in different units. Suppose, for instance, that we needed to find the area
of a 1 cm by 4 m rectangle. Units of cm× m are meaningless; we need to convert
the units to the same form before proceeding, and if in doubt it is best to convert to
SI base units. Since 1 cm= 0.01 m, this gives an area of 0.01 m× 4 m= 0.04 m2.
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Question 3.1 Answer

Which of the following are units of area:

(inch)2; s2; m−2; cm2; km3; square miles?

Note: the symbols used for SI units are as given inBox 2.1.

3.1.2 Significant figures and rounding in calculations

It is not appropriate to quote answers to calculations to an unlimited number of
significant figures. Suppose that, as part of a calculation, you were asked to divide
3.4 (known to two significant figures) by 2.34 (known to three significant figures).
Entering 3.4÷2.34 on most scientific calculators gives 1.452 991 453, but to quote a
result to this number of significant figures would imply that you know the answer far
more precisely than is really the case. The fact that 3.4 is quoted to two significant
figures implies that the first digit is precisely known, but there is some uncertainty
in the second digit; similarly the fact that 2.34 is quoted to three significant figures
implies that there is some uncertainty in the third digit. Yet in giving the result as
1.452 991 453 we are claiming to be absolutely confident of the answer as far as
1.452 991 45, with just some uncertainty in the final digit. This is clearly nonsense!

The sensible number of significant figures to quote in any answer depends on a
number of factors. However, in the absence of other considerations, a simple rule of
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thumb is useful:

When multiplying and dividing numbers, the number of significant figures in
the result should be the same as in the measurement with thefewestsignificant
figures.

Applying this rule of thumb, the answer to the calculation 3.4÷2.34 should be given
to two significant figures, i.e. as 1.5.

Similarly, the result of the multiplication 8.4 cm× 5.7 cm (used in finding the area
of the top of the granite specimen) should be given as 48 cm2, again to two signifi-
cant figures.

There are two points of caution to bear in mind when thinking about the appropriate
number of significant figures in calculations.

Avoiding rounding errors

You should round your answer to an appropriate number of significant figures at the
end of a calculation. However, be careful not to round too soon, as this may intro-
duce unnecessary errors, known asrounding errors. As an example of the dangers
of rounding errors, let’s return to our previous example. We found that:

3.4÷ 2.34= 1.452 991 453
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Or, giving the answer to two significant figures:

3.4÷ 2.34= 1.5

Suppose that we now need to multiply the answer by 5.9:

1.452 991 453× 5.9 = 8.572 649 573= 8.6 to two significant figures

However, using the intermediate answer as quoted to two significant figures gives

1.5× 5.9 = 8.85= 8.9 to two significant figures

Rounding too soon has resulted in an incorrect answer.

The use of scientific calculators enables us to work to a large number of significant
figures and so to avoid rounding errors. If this is not possible, you should follow the
following advice:

Work to at least one more significant figure than is required in the final answer,
and just round at the end of the whole calculation.

In our example, the final answer should be given to two significant figures, which
means that we should work using the result of the first calculation to at least three
significant figures (1.45).

1.45× 5.9 = 8.555= 8.6 to two significant figures.
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Applying common sense!

Always bear in mind the real problem that you are solving, and apply common
sense in deciding how to quote the answer. Particular care needs to be taken when
the calculation involves numbers which areexactlyknown. A light-hearted example
should illustrate this point.

Question

Suppose you have 7 apples to share between 4 children. How many apples does
each child get?

Answer

Dividing the number of apples by the number of children gives

7
4
= 1.75

If we were to assume that the number of apples and number of children were
each quoted to one significant figure, we would round the answer to one signif-
icant figure too, i.e. to 2 apples. But we would then need eight apples, which
is more than we’ve got. In reality there areexactly4 children and 7 apples, so
the number of significant figures need not bother us. Provided we have a knife,
it is perfectly possible to give each child 1.75 (13

4) apples.
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Question 3.2

Do the following calculations and express your answers to an appropriate num-
ber of significant figures.

(a)
6.732
1.51

Answer

(b) 2.0× 2.5 Answer

(c)

(
4.2
3.1

)2

Answer

(d) What is the total mass of three 1.5 kg bags of flour? Answer

3.2 Calculating in scientific notation

In science it is very often necessary to do calculations using very large and very
small numbers, and scientific notation can be a tremendous help in this.

3.2.1 Calculating in scientific notation without a calculator

Suppose we need to multiply 2.50× 104 and 2.00× 105. The commutative nature
of multiplication is completely general, so it applies when multiplying two numbers
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written in scientific notation too. This means that (2.50× 104)× (2.00× 105) can be
written as (2.50× 2.00)× (104 × 105), i.e.

(2.50× 104) × (2.00× 105) = (2.50× 2.00)× (104 × 105)

= 5.00× 104+5

= 5.00× 109

All of the rules for the manipulation of powers discussed in Chapter 1 can be applied
to numbers written in scientific notation, but care needs to be taken to treat the
decimal parts of the numbers (such as the 2.50 in 2.50× 105) and the powers of ten
separately. So, for example

2.50× 104

2.00× 105
=

2.50
2.00

×
104

105
=

2.50
2.00

× 104−5 = 1.25× 10−1

and(
2.50× 105

)2
= 2.502 ×

(
105

)2
= 6.25× 1010
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Question 3.3

Evaluate the following without using a calculator, giving your answers in sci-
entific notation.

(a) (3.0× 106) × (7.0× 10−2) Answer

(b)
8× 104

4× 10−1
Answer

(c)
104 × (4× 104)

1× 10−5
Answer

(d)
(
3.00× 108

)2
Answer
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3.2.2 Using a calculator for scientific notation

In the rest of this chapter, and in your future studies of science generally, you will be
doing many calculations with numbers in scientific notation, so it is very important
that you know how to input them into your calculator efficiently and how to interpret
the results.

First of all make sure that you can input numbers in scientific notation into your cal-
culator.You can do this using the button you used to input powers inSection 1.3.1,
but it is more straightforward to use the special button provided for entering scien-
tific notation. This might be labelled as EXP, EE, E or EX, but there is considerable
variation between calculators. Make sure that you can find the appropriate button on
your calculator. Using a button of this sort is equivalent to typing the whole of ‘×10
to the power’. So, on a particular calculator, keying 2.5 EXP 12 enters the whole of
2.5× 1012.
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In addition to being able to enter numbers in scientific notation into
your calculator, it is important that you can understand your calculator
display when it gives an answer in scientific notation.

Enter the number 2.5×1012 into your calculator and look at the display.

Again there is considerable variation from calculator to calculator, but it
is likely that the display will be similar to one of those shown in Figure
3.3. The 12 at the right of the display is the power of ten, but notice
thatthe ten itself is frequently not displayed. If your calculator is one of
those which displays 2.5× 1012 as shown in Figure 3.3e, then you will
need to take particular care; thisdoes notmean 2.512 on this occasion.
You should be careful not to copy down a number displayed in this way
on your calculator as an answer to a question; this could cause confusion
at a later stage.

No matter how scientific notation is entered and displayed on your
calculator or computer, when writing it on paper you should always
use the form exemplified by 2.5× 1012.

To enter a number such as 5× 10−16 into your calculator, you may need
to use the button labelled something like+/− (as used inSection 1.1.3)
in order to enter the negative exponent.

(a)

(b)

(c)

(d)

(e)

e2.5 12

Figure 3.3: Examples of how
various calculators would dis-
play the number 2.5× 1012
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To enter a number such as 108 into your calculator using the scientific notation
button, it can be helpful to remember that 108 is written as 1× 108 in scientific
notation, so you will need to key something like 1 EXP 8.

If you are at all unsure about using your calculator for calculations involving sci-
entific notation, you should repeatQuestion 3.3, this time using your calculator.

Question 3.4 Answer

A square integrated circuit, used as the processor in a computer, has sides of
length 9.78× 10−3 m. Give its area in m2 in scientific notation and to an ap-
propriate number of significant figures.

3.3 Estimating answers

The first time I attempted Question 3.4, my calculator gave me the answer 95.6 m2.
This is incorrect (I’d forgotten to enter the power of ten). It is sensible to get into the
habit of checking that the answer your calculator gives is reasonable, by estimating
the likely answer. In the case of Question 3.4, the answer should beapproximately(
1× 10−2 m

)2
which you can see (without using a calculator!) is 1× 10−4 m2. So a

calculator answer of 95.6 m2 is clearly wrong.
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In addition to being useful as a way of checking calculator answers, estimated an-
swers are, in their own right, quite frequently all that is needed. Chapter 2 began
with a comparison between the size of a bacterium and the size of a pinhead. We
could use precise measuring instruments to find that the diameter of a particular
bacterium is 1.69µm (i.e. 1.69× 10−6 m) and that the diameter of the head of a
particular pin is 9.86× 10−4 m. The diameter of the pinhead would then be

9.86× 10−4 m

1.69× 10−6 m
= 5.83× 102 times bigger than that of the bacterium.

However, to get a feel for the relative sizes, we only really need to estimate the
answer. If an estimate is all that is required, it is perfectly acceptable to work to one
significant figure throughout (indeed, working to the nearest order of magnitude is
sometimes sufficient) and since the final answer is only approximately known, the
symbol ‘≈’ (meaning ‘approximately equal to’) is used in place of an equals sign.
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Worked example 3.1

Working to one significant figure throughout, estimate how many times big-
ger a pinhead of diameter 9.86× 10−4 m is than a bacterium of diameter
1.69× 10−6 m.

Answer

Diameter of pinhead≈ 1× 10−3 m.
Diameter of bacterium≈ 2× 10−6 m.

diameter of pinhead
diameter of bacterium

≈
1× 10−3 m

2× 10−6 m

≈
1
2
×

10−3

10−6

≈ 0.5× 10−3−(−6)

≈ 0.5× 103

≈ 5× 102

So the diameter of the pinhead is approximately 500 times that of the bac-
terium.
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It is important that you write out your mathematical calculations carefully, and one
of the functions of the worked examples scattered throughout the course is to illus-
trate how to do this. There are three particular points to note from Worked example
3.1.

Taking care when writing maths

1 Note that the symbols= and≈ mean ‘equals’ and ‘approximately equals’
and shouldneverbe used to mean ‘thus’ or ‘therefore’. It is acceptable to
use the symbol∴ for ‘therefore’; alternatively don’t be afraid to writewords
of explanation in your calculations.

2 It can make a calculation clearer if you align the= or ≈ symbols vertically,
to indicate that the quantity on the left-hand side is equal to or approximately
equal to each of the quantities on the right-hand side.

3 Note that the diameter of the bacterium and the pinhead each have metres
(m) as their units, so when one diameter is divided by the other, the units
cancel to leave a number with no units.

The handling of units in calculations is discussed further in Section 3.5.4.

Back J I 105



Contents �

Question 3.5 Answer

The average distance of the Earth from the Sun is 1.50× 1011 m and the dis-
tance to the nearest star other than the Sun (Proxima Centauri) is 3.99× 1016 m.
Working to one significant figure throughout, estimate how many times further
it is to Proxima Centauri than to the Sun.

3.4 Unit conversions

In calculating the area of the top of the granite specimen earlier in this chapter, we
measured the length of the sides in centimetres and hence calculated the area in cm2.
If we had wanted the area in the SI units of m2 we could have converted the lengths
from centimetres to metres before starting the calculation. We would then have had

area= (8.4× 10−2 m)× (5.7× 10−2 m) = 4.8× 10−3 m2

It is best, whenever possible, to convert all units to SI units before starting on a
calculation.

Unfortunately it is not always possible to convert units before commencing a calcu-
lation; sometimes you will be given an area in, say, cm2, without knowing how the

Back J I 106



Contents �

area was calculated, and you will need to convert this to an area in m2. This section
discusses this, as well as some more complex unit conversions.

3.4.1 Converting units of area

Let’s start with an example which is relatively easy to visual-
ize. Suppose we want to know how many mm2 there are in a
cm2. There are 10 millimetres in a centimetre, so each side of the
square centimetre in Figure 3.4 measures either 1 cm or 10 mm.
To find the area, we need to multiply the length by the width.
Working in centimetres gives

area= 1 cm× 1 cm= (1 cm)2 = 12 cm2 = 1 cm2

Working in millimetres gives

area= 10 mm× 10 mm= (10 mm)2 = 102 mm2 = 100 mm2

Thus 1 cm2 = 100 mm2 and 1 mm2 =
1

100
cm2.

1
c
m

1 cm

10 mm

1
0

m
m

Figure 3.4: A square centimetre
(not to scale)

If we want to convert from cm2 to mm2 we need to multiply by 100; if we want to
convert from mm2 to cm2 we need to divide by 100.
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Figure 3.5 illustrates another example which is a little harder to
visualize. Each side of the square measures either 1 km or 1000 m
(103 m). Working in kilometres gives

area= 1 km× 1 km= (1 km)2 = 12 km2 = 1 km2

Working in metres gives

area= 103 m× 103 m =
(
103 m

)2
=

(
103

)2
m2 = 106 m2

Thus 1 km2 = 106 m2 and 1 m2 =
1

106
km2.

To convert from km2 to m2 we need to multiply by 106; to convert
from m2 to km2 we need to divide by 106.

103 m

1
0

3
m

1 km

1
k
m

Figure 3.5: A square kilometre

The number by which we need to divide or multiply to convert from one unit to
another is known as the‘conversion factor’. In general, to convert between units
of area we need tosquarethe conversion factor which we would use to convert
corresponding lengths.
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As a final example consider a conversion between km2 and mm2.

There are 103 millimetres in a metre and 103 metres in a kilome-
tre, so there are 106 millimetres in a kilometre as illustrated in
Figure 3.6.

To convert from kilometres to millimetres we need to multiply by
106; however to convert from km2 to mm2 we need to multiply by(
106

)2
, i.e. 1012.

Similarly, to convert from mm2 to km2 we need to divide by(
106

)2
, i.e. 1012.

106 mm

1
0

6
m

m

1 km

1
k
m

Figure 3.6: A square kilometre

Question 3.6

A desk has an area of 1.04 m2. Express this area in:

(a) cm2 Answer

(b) µm2 Answer

(c) km2 Answer
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3.4.2 Converting units of volume

The volume of the piece of granite shown inFigure 3.2is given by

volume= length× width× height

The lengths of the sides are 8.4 cm, 5.7 cm and 4.8 cm, so

volume= 8.4 cm× 5.7 cm× 4.8 cm

= 2.3× 102 cm3 to two significant figures.

Note that the units which have been multiplied together are cm× cm× cm, so in
this case the units of volume are cm3. A value given for volume shouldalwayshave
units equivalent to those used for (length)3, and if we had converted the lengths of
the sides to metres before doing the calculation, we would have obtained a value for
volume in m3:

volume= (8.4× 10−2 m)× (5.7× 10−2 m)× (4.8× 10−2 m)

= 2.3× 10−4 m3 to two significant figures.

The method for converting between different units of volume is a direct extension
of the method for converting between different units of area. Suppose we want to
know how many mm3 there are in a cm3.

Back J I 110



Contents �

There are 10 mm in 1 cm, so each side of the cubic centimetre
in Figure 3.7 measures either 1 cm or 10 mm. The volume can
be written as either 1 cm3 or 103 mm3. Thus 1 cm3 = 103 mm3

and 1 mm3 =
1

103
cm3. To convert from cm3 to mm3 we need to

multiply by 103; to convert from mm3 to cm3 we need to divide
by 103.

In general, to convert between units of volume we need tocube
the conversion factor that we would use to convert corresponding
lengths.

We can convert a volume of 2.3× 102 cm3 into m3 simply by say-

ing that there are 102 cm in 1 m; hence there are
(
102

)3
cm3 in

1 m3, so

1 cm3 =
1(

102)3 m3

and

1
c
m

10 mm

10 mm

1
0

m
m

1
cm

1 cm

Figure 3.7: A cubic centimetre (not
to scale).

2.3× 102 cm3 =
2.3× 102(

102)3 m3

= 2.3× 10−4 m3

This value is, of course, the same as the one we obtained from first principles!
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The prefix ‘deci’ meaning one tenth was introduced inSection 2.2, thus 1 decimetre
(dm) is one tenth of a metre. The cubic decimetre (dm3) is sometimes used as a unit
of volume. The litre (l) (also introduced in Chapter 2) was defined in 1901 as the
volume of a kilogram of water at 4◦C, under standard atmospheric pressure. This
volume turns out to be 1.000 28 dm3, and since 1969 a litre has beendefinedto be
1 dm3.

Worked example 3.2

Convert a volume of 1 dm3 to: (a) cm3 (b) m3

Answer

(a) 1 m= 10 dm and 1 m= 100 cm so 1 dm= 10 cm.

Thus 1 dm3 = 103 cm3.

(b) 1 m= 10 dm

Thus 1 m3 = 103 dm3

and 1 dm3 =
1

103
m3 = 10−3 m3.

{Thus 1 dm3 (i.e. 1 litre) is a thousand times bigger than a cubic centimetre
and a thousand times smaller than a cubic metre. You may already have been
aware that 1 litre= 1000 cm3. Thus 1 ml= 1 cm3. }
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Figure 3.8is a summary of unit conversions for length, area and volume, but you
should try to remember the general principles involved rather than memorizing in-
dividual conversion factors.

Question 3.7

Express each of the following volumes in scientific notation in m3:

(a) the volume of the planet Mars, which is 1.64× 1011 km3; Answer

(b) the volume of a ball bearing, which is 16 mm3. Answer

3.4.3 Converting units of distance, time and speed

You were introduced inBox 2.1to the metre as the base unit of distance or length
and to the second as the base unit of time. The average speed with which an object
moves is the total distance travelled divided by the total time taken, so when Marion
Jones won the women’s 100-metre final at the 2000 Sydney Olympics in 10.75 s,
her average speed was

average speed=
100.0 m
10.75 s

= 9.302 m s−1
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Similarly, if a girl grows a total of 116 cm in 12.5 years, her average rate of growth
is

growth rate=
116 cm

12.5 years
= 9.28 cm year−1

Note that it is appropriate to give the answer to the first example to four significant
figures (assuming that the length of the running track was known to at least four
significant figures). Also note the way in which the units have been written in both
examples.

The notation of negative exponents, which we have used to represent numbers
like 1/23 as 2−3 and 1/108 as 10−8, can also be used for units. So 1/s can
be written as s−1, m/s can be written as m s−1 and cm/year can be written as
cm year−1.

The SI unit of speed is m s−1 and this is usually said as ‘metres seconds to the minus
one’. Although m s−1 is the correct scientific way of writing the unit, it is sometimes
written as m/s, and quite frequently said as ‘metres per second’, even when written
as m s−1. The ‘/’ for per is quite commonly used in other units too.
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Many things move and/or grow in the world around us, and it is useful to com-
pare different values for speed or rate of growth. Different speeds are frequently
measured in different units, so in order to be able to compare like with like it is
necessary to convert between different units for distance, time and speed. Box 3.1
considers various examples of speed and growth, and the text immediately following
the box looks at ways of converting one unit to another.

Box 3.1 How fast?

Light (and other forms of radiation such as X-rays and radio waves) travels in a
vacuum with a constant speed of 3.00× 108 m s−1. It is currently believed that
nothing can travel faster than this.

Towards the opposite extreme are stalactites and stalagmites, which grow just
fractions of a millimetre each year. A typical growth rate is 0.1 mm year−1.
Stalactites form when water drips from the roof of an underground cave, de-
positing calcite (frequently from the limestone in the rock above the cave) in
an icicle shaped formation as it does so. Stalagmites form as the water drips
onto the floor of the cave, depositing further calcite.
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Figure 3.9: The Saskatchewan Glacier, Banff National Park, Canada.

It is not normally possible to detect the motion of a glacier by eye, but there
is considerable variation in the speed with which they move. The Franz Josef
Glacier in New Zealand is particularly fast moving, with an average speed of
about 1.5 m day−1. The speed of the Saskatchewan Glacier in Canada (Figure
3.9) is rather more typical, at about 12 cm day−1.

In addition to geological processes such as glacier flow and stalactite formation,
the theory of plate tectonics tells us that the surface of the Earth is itself moving.

The Earth’s surface is thought to comprise seven major tectonic plates and
numerous smaller ones, each only about 100 km thick but mostly thousands of
kilometres in width. Evidence, including evidence from sea-floor spreading (to
be discussed in Chapter 5) indicates that plates move relative to one another
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with speeds between about 10 km Ma−1 and 100 km Ma−1 (where Ma is the
abbreviation for a million years, as discussed inSection 2.2).

P waves S waves Love waves Rayleigh waves

5 minutes

Figure 3.10: A seismogram (the printout from a seismometer) showing the
arrival of P waves, S waves, Love waves and Rayleigh waves from a distant
earthquake. Elapsed time increases from left to right.

Earthquakes and volcanoes occur all over the Earth, but they are more com-
mon close to the boundaries of tectonic plates than elsewhere. Following an
earthquake, seismic waves (the word ‘seismic’ is from the Greek for ‘shak-
ing’) travel out from the centre of the quake and are recorded by seismometers
at various locations. There are several different types of seismic waves, in-
cluding P waves, S waves, Love waves and Rayleigh waves, each travelling at
different speeds (and sometimes also by different routes), so reaching a given
seismometer at different times (see Figure 3.10). P waves travel fastest, with
an average speed of about 5.6 km s−1 in rocks close to the Earth’s surface, so
reach the seismometer first (the name P wave was originally an abbreviation
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for primary wave). S waves (S for secondary) travel with an average speed of
about 3.4 km s−1 in rocks close to the Earth’s surface.

Perhaps the most dangerous sort of volcanic eruption is one that leads to a
high-speed pyroclastic flow (a mixture of rock fragments and gases, moving as
a fluid) away from the volcano. Pyroclastic flows are particularly destructive
both because of their high temperatures (typically between 200◦C and 700◦C)
and the high speed at which they travel (up to about 100 km hour−1).

The speeds given so far have related to processes on the Earth, but remember
that the Earth itself is moving too! The rotation of the Earth on its axis leads to
a movement of up to 0.5 km s−1 at the surface. In addition, the Earth is orbiting
the Sun at about 30 km s−1 and the entire Solar System is moving around the
centre of the galaxy at about 250 km s−1.

To convert from one unit of speed to another, we may need to convert both the
unit of distance and the unit of time. To start with, let’s consider the rather more
straightforward case when we only have to convert the unit of distance, for example
in converting from mm s−1 to m s−1.

We know that 1 m= 103 mm

so 1 mm=
1

103
m = 1× 10−3 m

We can therefore say straight away that 1 mm s−1 = 1× 10−3 m s−1
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We have simply applied the same conversion factor as in converting from mm to m.
Note that the answer makes sense: it is reasonable to expect that the numerical value
of a speed in m s−1 will be smaller than the same speed when given in mm s−1.

Worked example 3.3

Convert the speed of the Earth as it orbits the Sun (given above as 30 km s−1)
into a value in m s−1.

Answer

1 km= 1× 103 m

So

1 km s−1 = 1× 103 m s−1

30 km s−1 = 30× 103 m s−1

= 3.0× 104 m s−1 in scientific notation.

The Earth orbits the Sun with a speed of about 3.0× 104 m s−1. Again the
answer makes sense: it is reasonable to expect that the numerical value of a
speed in m s−1 will be larger than the same speed when given in km s−1.
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Next let’s consider what happens when we need to convert only the time part of
units of speed, for instance in converting from km hour−1 to km s−1.

We know that there are 60 minutes in an hour and 60 seconds in a minute, so

1 hour= 60× 60 s= 3600 s

However, in this case we don’t want to convert from hours to seconds, but rather
from kilometresper hour to kilometresper second. The way forward comes in
recognizing that the word ‘per’ and the use of negative exponents in hour−1 and s−1

indicate division. So to convert from hour−1 to s−1 (or from km hour−1 to km s−1)
we need to find the conversion factor from hours to seconds and thendivideby it.

1 hour= 3600 s

so 1 km hour−1 =
1

3600
km s−1

In deciding whether to divide or multiply by a particular conversion factor, common
sense can also come to our aid. It is reasonable to expect that a speed quoted in
km s−1 will be smaller than the same speed when quoted in km hour−1, so it is
reasonable todivideby the 3600 on this occasion.
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Worked example 3.4

Two tectonic plates are moving apart at an average rate of 35 km Ma−1. Convert
this to a value in km year−1.

Answer

We know that

1 Ma= 106 years

so

1 km Ma−1 =
1

106
km year−1

and therefore

35 km Ma−1 =
35

106
km year−1

= 3.5× 10−5 km year−1 in scientific notation.

The plates are moving apart at an average rate of 3.5× 10−5 km year−1.

This answer is reasonable: you would expect the rate of separation quoted in
km year−1 to be smaller than the same rate quoted in km Ma−1.

Back J I 121



Contents �

Question 3.8

Convert the average speed of the Saskatchewan Glacier (12 cm day−1) to a
value in:

(a) m day−1 Answer

(b) cm s−1 Answer

Finally we need to consider conversions for speed in which both the units of distance
and the units of time have to be converted. This is simply a combination of the
techniques illustrated in Worked examples 3.3 and 3.4. Suppose we want to convert
from km hour−1 to m s−1.

1 km= 103 m

1 hour= 3600 s

To convert from km hour−1 to m s−1, we need tomultiply by 103 (to convert the km
to m) anddivideby 3600 (to convert the hour−1 to s−1):

1 km hour−1 =
103

3600
m s−1 = 0.278 m s−1 to three significant figures.
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Worked example 3.5

Convert the average speed of separation of the tectonic plates discussed in
Worked example 3.4 (35 km Ma−1) to a value in mm year−1.

Answer

1 km= 103 m and 1 m= 103 mm, so 1 km= 106 mm

1 Ma= 106 year

To convert from km Ma−1 to mm year−1, we need tomultiplyby 106 (to convert
the km to mm) anddivideby 106 (to convert the Ma−1 to year−1.

1 km Ma−1 =
106

106
mm year−1 = 1 mm year−1

Thus a speed given in km Ma−1 is numerically equal to one given in mm year−1.
The plates are moving apart at a 35 mm year−1. This is similar to the rate at
which human fingernails grow and is easier to imagine than is 35 km Ma−1.
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Question 3.9

Convert each of the following to values in m s−1 and then compare them.

(a) A stalactite growth rate of 0.1 mm year−1. Answer

(b) The average speed of the Saskatchewan Glacier (12 cm day−1). Answer

(c) The speed of separation of the tectonic plates discussed in
Worked examples 3.4 and 3.5 (35 km Ma−1).

Answer

(Note: for the purposes of this question, consider 1 year to be 365 days long.)
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3.4.4 Concentration and density; more unit conversions

Methods for converting units for physical quantities, such as concentration and den-
sity, follow directly from the discussion in the previous sections.

Box 3.2 Concentration

The concentration of a solution is a term used as a measure of how much of a
certain substance the solution contains, relative to the solution’s total volume.
For example, we may want to know how much sugar has been dissolved in
water to give one litre of syrup.

The amount of the substance can be measured in moles, in which case the
concentration will have units of mol l−1 or mol dm−3. Alternatively, the amount
can be measured by mass, in kg, g, mg, etc., leading to units for concentration
of kg dm−3, g m−3, or mg l−1, and so on.

The World Health Organization (WHO) sets limits for safe concentrations of
various impurities in water, for example, the limit for the concentration of ni-
trates in water is currently 50 mg l−1. This means that there should be no more
than 50 mg of nitrate in each litre (dm3) of water.
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To convert a concentration from, say, mg l−1 to µg ml−1 you need to follow a very It is very easy to
confuse the letter ‘l’,
used as the symbol for
litres, with the number
1. Take care!

similar procedure to the one introduced inSection 3.4.3, as the following worked
example shows.

Worked example 3.6

Convert 50 mg l−1 (the World Health Organization’s limit for the concentration
of nitrates in water) to a value inµg ml−1.

Answer

We can easily write down the conversion factors for mg toµg and from litres
to ml.

1 mg= 103 µg

1 litre = 1 l = 103 ml

So to convert from mg l−1 to µg ml−1, we need tomultiply by 103 (to convert
the mg toµg) anddivideby 103 (to convert the l−1 to ml−1).

1 mg l−1 =
103

103
µg ml−1 = 1 µg ml−1

Thus a concentration given in mg l−1 is numerically equal to one given in
µg ml−1, in particular 50 mg l−1 = 50µg ml−1.
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Box 3.3 Density

The density of a piece of material is found by dividing its mass by its volume.
In other words

density=
mass

volume

If mass is measured in kg and volume is in m3, then it follows that the unit of
density will be kg/m3 (said as ‘kilograms per metre cubed’) or, written in the
form favoured in this course, kg m−3 (said as ‘kilograms metres to the minus
three’).

The density of pure water is 1× 103 kg m−3; materials with a density greater
than this (such as steel of density 7.8× 103 kg m−3) will sink in water
whereas materials of lower density (such as wood from an oak tree, density
6.5× 102 kg m−3) will float.

If mass is measured in g and the volume is in cm3, then the unit of density
will be g cm−3. Note that g cm−3 is not an SI unit, but it is nevertheless quite
frequently used.
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Question

The specimen of granite shown inFigure 3.2has a mass of 6.20× 102 g. Cal-
culate the density of the granite in g cm−3.

Answer

The volume of the specimen= 8.4 cm× 5.7 cm× 4.8 cm, so

density=
mass

volume

=
6.20× 102 g

8.4 cm× 5.7 cm× 4.8 cm
= 2.6977 g cm−3

= 2.7 g cm−3 to two significant figures.

Note that it was not necessary actually to calculate a value for volume before
completing the calculation of density. If you had used the value for volume
calculated at the beginning ofSection 3.4.2, you would have obtained

density=
mass

volume
=

6.20× 102 g

2.3× 102 cm3
= 2.7 g cm−3

but you would have risked introducing rounding errors.
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The final worked example in this section converts the units of the density of the
granite specimen from g cm−3 to kg m−3, using a method which is a combination of
the techniques taught throughout Section 3.4. You can convert units of concentration
such as mg dm−3 to g m−3 in a similar way.

Worked example 3.7

Convert 2.7 g cm−3 (the density of the specimen of granite shown in Figures
3.1 and 3.2) to a value in the SI units of kg m−3.

Answer

1 kg= 103 g, so 1 g= 1
103 kg = 10−3 kg

1 m= 102 cm, so 1 m3 =
(
102

)3
cm3 = 106 cm3 (from Section 3.4.2)

so 1 cm3 = 1
106 m3 = 10−6 m3

To convert from g cm−3 to kg m−3 we need tomultiply by 10−3 (to convert the
g to kg) anddivideby 10−6 (to convert the cm−3 to m−3).

1 g cm−3 =
10−3

10−6
kg m−3 = 10−3−(−6) kg m−3 = 103 kg m−3

Thus 2.7 g cm−3 = 2.7× 103 kg m−3.

The specimen of granite has a density of 2.7× 103 kg m−3.
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You may have already known that you need to multiply by 1000 in order to convert
from units of g cm−3 to units of kg m−3, but as was the case with the unit conversions
for area and volume, it is better to consider general principles rather than trying to
memorize conversion factors.

Question 3.10

The World Health Organization reduced its maximum recommended concen-
tration for arsenic in drinking water from 50µg l−1 to 10µg l−1 in 1999. Con-
vert 10µg l−1 to a value in:

(a) µg ml−1 Answer

(b) mg dm−3 Answer

(c) g m−3 Answer
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3.5 An introduction to symbols, equations and formulae

To progress further in our exploration of ways of calculating in science, we need to
enter the world of symbols, equations and formulae. The word‘algebra’ is used
to describe the process of using symbols, usually letters, to represent quantities
and the relationships between them. Algebra is a powerful shorthand that enables
us to describe the relationships between physical quantities briefly and precisely,
without having to know their numerical values. Some people consider algebra to be
a beautiful thing: others are filled with terror by the very word. This course may not
convince you of algebra’s beauty, but it should at least illustrate its usefulness and
give you an opportunity to learn and practise new techniques or revise old ones.

Chapter 4 is devoted to algebraic techniques such as simplifying, rearranging, and
combining equations. The remainder of Chapter 3 simply introduces the language
of algebra by looking at a few equations very carefully, and substituting values into
them.

The wordequationis used for an expression containing an equals sign. The quanti-
ties under consideration may be described in words, for example

density=
mass

volume
in which case the equation is known as a‘word equation’, or represented by sym-
bols, for example

ρ =
m
V
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but the important thing to remember is that what is written on the left-hand side of
the ‘=’ sign mustalwaysbe equal to what is written on the right-hand side. Thus, as
explained inTaking care when writing mathsin Section 3.3, you should never use
‘=’ as a shorthand for anything other than ‘equals’.

The wordformula is used in mathematics to mean a rule expressed in algebraic

symbols. Thusρ =
m
V

is a formula which tells you that the densityρ of a substance

can be obtained by dividing the mass,m, of a sample of the substance by the volume,
V, of the sample. Strictly speaking, not all equations are formulae, but the words
tend to be used interchangeably.

3.5.1 What do the symbols mean?

Mathematics textbooks teaching algebra frequently contain page after page of equa-
tions of the form:

x+ 3 = 8 (3.1)

and

y = x+ 5 (3.2)

In Equation 3.1,x can only have one value, i.e. it is a constant. In this casex has
the value 5. In Equation 3.2,x andy arevariableswhich can each take an infinite
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number of values, buty will always be 5 greater thanx. The values (ofx andy, etc.)
which satisfy a particular equation are known assolutionsand if you are asked to
solvean equation you need to look for solutions.

In both Equation 3.1 and Equation 3.2,x andy represent purenumbers. Equations
in science are often rather different. Rather than representing pure numbers, the
symbols usually represent physical quantities and will therefore haveunitsattached.

3.5.2 Which symbols are used

Box 3.4contains a range of scientific formulae in common use, along with a brief
explanation of the meaning of each symbol used. Have a quick at these equations
now, but don’t worry about their details; you are not expected to learn them or to
understand the meanings of the scientific terms introduced. The equations in the
boxes will be used as examples throughout the rest of this chapter, and have been
numbered for ease of reference.

The symbol chosen to represent something is often the first letter of the quantity in
question, e.g.m for mass,t for time andl for length, but it isn’t always so simple.
Greek letters are also frequently used as symbols e.g.λ (lambda) for wavelength in
Equation 3.13andρ (rho) for density inEquations 3.9, 3.10and3.11. A list of Greek
letters and their pronunciation is given in theTable 3.1and you will soon become
familiar with those that are commonly used. In a sense it doesn’t matter which
symbol you use to represent a quantity, since the symbol is only an arbitrarily chosen
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label. For instance, Einstein’s famous equation (Equation 3.7) is usually written as
E = mc2, but the equation could equally well be written using any symbols you
wanted to use, e.g.p = qr2, provided you also made it clear thatp was used to
represent energy,q was used to represent mass andr was used to represent the
speed of light. However, the use of conventional symbols, such asE for energy,
saves scientists a lot of time in explaining their shorthand.Maths for Sciencefollows
convention as far as possible in its use of symbols. Sometimes the reason for the
choice of symbol will be obvious but unfortunately this is not always the case.

Sometimes a subscript is used alongside a symbol in order to make its meaning more
specific, as invi , vf andvav used inEquation 3.15to mean initial, final, and average
speed, andax in Equations 3.16and3.17used to mean acceleration along thex-axis.
Note that althoughax, for example, uses two letters, it represents a single physical
entity; note also thatax is not the same asax. The symbol∆ (the Greek upper case
delta) is frequently used to represent the change in a quantity, so∆T in Equation
3.14means a change in temperatureT; again asinglephysical entity is represented
by two letters.

A few letters have more than one conventional meaning, for examplec in Equation
3.7represents the speed of light, but inEquation 3.14the same letter represents spe-
cific heat capacity. Other letters have two meanings but lower case is conventionally
used for one meaning and upper case for the other, for examplev for speed andV for
volume ort for time andT for temperature. Care needs to be taken, but the intended
meaning should be clear from the context.
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Unfortunately some Greek letters look rather like everyday English ones; for exam-
ple ρ (rho), used for density, can look rather like the English lower casep. Some
textbooks use lower casep for pressure (this course uses capitalP) andEquation
3.11 (P = ρgh) can then appear to have the same quantity on both the left- and
right-hand sides of the equals sign, especially when written out by hand. In reality,
this formula haspressureon the left-hand side anddensity(and other things) on the
right-hand side. A similar confusion can arise because the letterl can look like the
number 1.

A final possible source of confusion stems from the fact that the same letter may
sometimes be used to represent both a physical quantity and a unit of measurement.
For example, an object with a mass of 6 kilograms and a length of 2 metres might
be described by the relationshipsm = 6 kg, l = 2 m, where the letter m is used to
represent both mass and the units of length, metres. In all material for this course,
and in most other printed text, letters used to represent physical quantities are printed
in italics, whereas those used for units are not.
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3.5.3 Reading equations

To understand, and thus use, the equations inBox 3.4you need to be aware of a few
rules and conventions. Most of these are extensions of things you have learnt earlier
in this course. First:

When using symbols instead of words or numbers, it is conventional to drop
the ‘×’ sign for multiplication.

So inEquation 3.6, mameans masstimesmagnitude of acceleration and inEquation
3.11, ρghmeans densitytimesacceleration due to gravitytimesdepth.

Rules of arithmetic, such as the fact that addition and multiplication are com-
mutative, and theBEDMAS order of operations, apply when using symbols
too.

The fact that multiplication is commutative means that equations involving several
multiplications can be written in any order. SoEquation 3.14could be (and some-
times is) written asq = cm∆T instead ofq = mc∆T. Addition is also commutative,
soEquation 3.16could be written asvx = axt + ux instead ofvx = ux + axt.

Although the order in which multiplications are written doesn’t matter, various con-
ventions are generally applied. Note that inEquation 3.3(C = 2π r), the number 2
is written first, then the constantπ, then the variabler. This order (numbers, then

Back J I 136



Contents �

constants, then variables) is the one that is generally applied. Similarly,E = mc2

(Equation 3.7) could be written asE = c2m, but it generally isn’t! Variables that are
raised to a power tend to appear at the end of equations.

BEDMAS tells us that operations within brackets take precedence, i.e. operations
inside brackets should be evaluated before those outside the brackets. When work-
ing with symbols, this means that an operation applied to a bracket applies to every-
thing within the bracket. So inEquation 3.19, the whole of

(
2GM

R

)
is raised to the

power 1
2. Equation 3.20uses two sets of brackets (different styles of brackets have

been used to avoid confusion). The inner, round brackets ( ) are used to indicate
that L should be divided by the whole of (4π F) and the outer, square brackets [ ]
are used to indicate that the whole ofL/ (4π F) should be raised to the power1

2 .

There are two further points to note that are linked to the use of brackets.

1 A square root sign and a horizontal line used to indicate division can both be
thought of as containing invisible brackets, i.e. the square root sign is taken to
apply to everything within the sign and the division applies to everything above

the line. So, inEquation 3.10, the square root applies to the whole of

(
µ

ρ

)
, (this

means that
√
µ

ρ
could be written as

√
µ
√
ρ

), and inEquation 3.15the whole of

(vi + vf) should be divided by two.

2 Throughout this course, brackets are sometimes used for added clarity even when
this is not strictly necessary. In addition, you are encouraged to add your own
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brackets whenever you think doing so would make the meaning of an equation
clearer.

The ‘E’ in BEDMAS (seeSection 1.4) tells us that exponents take precedence over
divisions and multiplications, so inEquation 3.7(E = mc2) thec must be squared
before being multiplied bym. This means that it isonly the c that is squared, not
the m. For clarity you could write this asE = m

(
c2

)
, but it is very important to

remember thatmc2 , (mc)2, i.e. thatmc2 , m2c2, where the symbol, means ‘is
not equal to’.

BEDMAS also reminds us that multiplications should be carried out before addi-
tions and subtractions, so inEquation 3.16, ax andt should be multiplied together
beforeux is added.

Finally, note that all of the rules discussed in Chapter 1 for the writing and manipu-
lation of fractions and powers apply when using symbols, in exactly the same way as

they do when using numbers. So,Equation 3.17could be written assx = uxt +
axt2

2

instead ofsx = uxt + 1
2axt2; Equation 3.18could be written asFg =

Gm1m2

r2
instead

of Fg = G
m1m2

r2
; and the following two representations ofEquation 3.20, although

they look very different, are actually identical in meaning:

d =

√
L

4π F
d = [L/(4π F)]1/2
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Question 3.11 Answer

Which two pairsof equations fora of those given below are equivalent? You
should be able to answer this question by just looking at the equations, but you
might like to check your answer by substituting values such asx = 3, y = 4,
z= 5.

(i) a = x(y+ z)

(ii) a = xy+ z

(iii) a = (y+ z)x

(iv) a = x+ yz

(v) a = z+ yx
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Question 3.12 Answer

Two of the equations given below form are equivalent. Which two? Again,
you should attempt this question initially by simply looking at the equations.

(i) m=
bac2

d

(ii) m= a
b2c2

d

(iii) m= a
bc2

d

(iv) m=
abc2

ad

(v) m=
b2a2c2

d
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3.5.4 Using equations

Substituting values into equations provides a way of checking your understanding
of many of the techniques introduced in this chapter, especially the correct reading
of equations, the use of scientific notation, and the need to quote answers to an
appropriate number of significant figures. It also provides an opportunity for you to
extend your understanding of units in calculations and to begin to think about how
to choose an appropriate equation to use in answering a particular question. Don’t
worry about the science in the worked examples in this section; they are given as
illustrations of good practice for substituting values into equations.

Worked example 3.8

Usevx = ux + axt (Equation 3.16) to find the speed reached after 0.45 s by a
stone thrown downwards from a cliffwith initial speed 1.5 m s−1. This situation
is illustrated inFigure 3.11. You can assume that themagnitude(size) of the
acceleration is 9.81 m s−2, where m s−2 are the SI units of acceleration.

Answer

Equation 3.16states thatvx = ux + axt, and we are trying to findvx. The
question tells us that

ux = 1.5 m s−1 ax = 9.81 m s−2 t = 0.45 s
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Thus
vx =

(
1.5 m s−1

)
+

(
9.81 m s−2 × 0.45 s

)
where the units ofax are m s−2 and the units oft are s, so the units ofaxt are
m s−2 × s. Simplifying this gives

m s−2 × s=
m

s2
× s=

m× �s
s× �s

=
m
s
= m s−1

So

vx = 1.5 m s−1 + 4.4145 m s−1

= 5.9 m s−1 to two significant figures,

i.e. the speed after 0.45 seconds is 5.9 m s−1.
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Note, fromWorked example 3.8, the following points about the handling of units:

1 Calculations have been done in SI units.

2 Units have been included next to values at all times, and the units in the final
answers are both consistent with the workingandwhat we would expect the
units of the final answer to be.

The second point follows from what was said about units inSection 3.1.1; we have
input values with units of m s−1 for initial speed, units of s for time, and units of
m s−2 for acceleration, and the units for final speed haveworked out to bem s−1. We
have not simply assumed the units for final speed to be m s−1, but rather have calcu-
lated the units forvx at the same time as calculating the numerical value. Handling
units in this way ensures that the answers are expressed as physical quantities (with
units), not just numbers. It also gives an easy way of checking a calculation. If the
final units inWorked example 3.8had come out as m2 s−1 you might have realized
that, since these arenot units of speed, you must have made a mistake.

It is good practice to work out the units in this way inall your scientific calculations.
To enable you to do this,Box 3.5explains a little more about some of the derived
units that you will encounter in this course.
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Box 3.5 Derived SI units

Box 2.1 introduced the SI base units, and since then you have encountered
the SI units of m s−1 for speed, kg m−3 for density and m s−2 for acceleration.
These units are combinations of the base units m, kg and s; other physical
quantities have units involving other base units too. Some physical quantities
are so commonly used that their units have names and symbols of their own,
even though they could be stated as a combination of base units. Several of
these derived units are listed in Table 3.2. Note that if you become a sufficiently
famous scientist you are likely to end up with a unit named after you! The units
in Table 3.2 are named after Sir Isaac Newton, James Prescott Joule, James
Watt, Blaise Pascal and Heinrich Hertz respectively.

Physical quantity Name
of unit

Symbol
for unit

Base unit
equivalent

force, such as weight newton N kg m s−2

energy joule J kg m2 s−2

power watt W kg m2 s−3

pressure pascal Pa kg m−1 s−2

frequency hertz Hz s−1

Table 3.2: Some derived units
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Note also that many of the derived units are interlinked:

1 J= 1 N× 1 m

1 W =
1 J
1 s

1 Pa=
1 N

1 m2

The following data may help to illustrate the sizes of the units:

• An eating apple has a weight of about 1 N on Earth;

• An athlete with mass 75 kg, sprinting at 9 m s−1, has an energy of about
3000 J;

• A domestic kettle has a power rating of about 2500 W;

• Atmospheric pressure at sea-level is about 105 Pa;

• The human heart beats with a frequency of about 1.3 Hz.
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To find the units ofvescin Worked example 3.9, you need to use the fact, from Table
3.2, that 1 N= kg m s−2. This worked example also provides a reminder of the
importance of converting to SI base units before beginning a calculation.

Worked example 3.9

Usevesc =

(
2GM

R

)1/2

(Equation 3.19) to find the escape speed,vesc, needed

for an object to escape from the Earth’s gravitational attraction. The mass of
the Earth,M = 5.98× 1024 kg, the radius of the Earth,R= 6.38× 103 km and
G = 6.673× 10−11 N m2 kg−2.

Answer

ConvertingR to SI base units gives

R= 6.38× 103 km

= 6.38× 103 × 103 m

= 6.38× 106 m

M = 5.98× 1024 kg

G = 6.673× 10−11 N m2 kg−2
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Substituting in Equation 3.19

vesc=

(
2GM

R

)1/2

=

(
2× 6.673× 10−11 N m2 kg−2 × 5.98× 1024 kg

6.38× 106 m

)1/2

Rearranging this so that the units on the top of the fraction are all together we
get

vesc=

(
2× 6.673× 10−11× 5.98× 1024 N m2 kg−2 kg

6.38× 106 m

)1/2

Since 1 N= 1 kg m s−2, this can be rewritten as

vesc=

(
2× 6.673× 10−11× 5.98× 1024 kg m s−2 m2 kg−2 kg

6.38× 106 m

)1/2
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This can be simplified by cancelling some of the units

vesc=

(
2× 6.673× 10−11× 5.98× 1024

��kg��ms−2 m2
���kg−2

��kg

6.38× 106 ��m

)1/2

Calculating the numeric value, and reordering the units, we have

vesc=
(
1.2509× 108 m2 s−2

)1/2

Taking the square root of both 1.2509× 108 and m2 s−2 gives

vesc= 1.12× 104 m s−1 to three significant figures.

The escape speed is 1.12× 104 m s−1, with units of m s−1, as expected.
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Question 3.13 Answer

In a classic experiment in the USA in 1926, Edgar Transeau calculated the
amount of energy stored in the corn plants in a one-acre field in a 100-day
growing period to be 1.06× 108 kJ. This isNPP in Equation 3.8. For the
same field and the same time period, he found the energy used by the plants in
respiration (R) to be 3.23× 107 kJ. UseEquation 3.8to find the corresponding
value ofGPP, the total energy captured by the plants.

Question 3.14 Answer

UseEquation 3.13to find the speed of waves (in m s−1) which have a frequency
of 4.83× 1014 Hz and a wavelength of 621 nm.

The final worked example in this section returns us to the piece of granite introduced
at the beginning of the chapter. It is perhaps a somewhat more realistic example than
Worked examples 3.8 and 3.9 because the question does not tell us which formula
to use.
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Worked example 3.10

The rigidity modulus of granite (a measure of the rock’s ability to resist defor-
mation) near the surface of the Earth is 3.0× 1010 Nm−2. Use this value, and
the value you found previously for the density of granite to find the speed of S
waves travelling through granite.

Answer

Which equation shall we use? When faced by this dilemma it is best to start
by thinking carefully about what you already know and what you want to
find. On this occasion we’re told that the rigidity modulus is 3.0× 1010 Nm−2

and we know (fromWorked example 3.7) that the density of granite is
2.7× 103 kg m−3 (using a value to three significant figures to avoid rounding
errors). We need to find a value for S wave speed. So we need an equa-
tion which links density, rigidity modulus and S wave speed;Equation 3.10

(vs =

√
µ

ρ
) from Box 3.4fits the bill.

Simply finding an equation from a list, all that is possible in this course, is
somewhat unlike the situation you are likely to encounter in the real scientific
world. Nevertheless, the principle of starting each question by thinking about
what you already know and what you want to find is a good one, and on this
occasion it makes it straightforward to find an equation to use from Box 3.4.

Back J I 150



Contents �

vs =

√
µ

ρ

µ = 3.0× 1010 N m−2

ρ = 2.70× 103 kg m−3

So

vs =

√
3.0× 1010 N m−2

2.70× 103 kg m−3

Since 1 N= 1 kg m s−2, this can be rewritten as

vs =

√
3.0× 1010 kg m s−2 m−2

2.70× 103 kg m−3

This can be simplified by cancelling the kg on top and bottom of the fraction

vs =

√
3.0× 1010

��kg m s−2 m−2

2.70× 103
��kg m−3
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Calculating the numeric value, and combining the m and m−2 on the top of the
fraction with the m−3 on the bottom, we have

vs =
√

1.11× 107 m2 s−2

= 3.3× 103 m s−1 to two significant figures

So the S waves travel with a speed of 3.3× 103 m s−1 through granite.

Question 3.15

The Earth has an average radius of 6.38× 103 km and a mass of 5.97× 1024 kg.
The Moon has a mass of 7.35× 1022 kg. The distance between the Earth and
the Moon is 3.84× 105 km andG = 6.673× 10−11 N m2 kg−2. Use appropriate
equations fromBox 3.4to calculate:

(a) the Earth’s volume (in m3); Answer

(b) the magnitude of the gravitational force between the Earth and
the Moon (in newtons).

Answer

Note: on this occasion you should be able to work out the final units of your
answer without expressing newtons in the form of base units. This is further
discussed in the answer to the question.
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3.6 Learning outcomes for Chapter 3

After completing your work on this chapter you should be able to:

3.1 demonstrate understanding of the terms emboldened in the text;

3.2 perform calculations to an appropriate number of significant figures;

3.3 give answers to calculations in appropriate SI units;

3.4 carry out calculations in scientific notation, both with and without the use of a
scientific calculator;

3.5 estimate answers to one significant figure;

3.6 convert between various units for quantities such as area, volume, speed,
density and concentration;

3.7 demonstrate understanding of the rules and conventions used in scientific
formulae;

3.8 substitute values (numbers and units) into scientific formulae.
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Algebra 4
At the end of Chapter 3 we used the equationvs =

√
µ

ρ
to calculate the S wave

speed,vs, of seismic waves passing through a rock of densityρ and rigidity modulus
µ. But suppose that, instead of knowingρ andµ and wanting to findvs, we know

vs andρ and want to findµ. The best way to proceed is to rearrangevs =

√
µ

ρ
to

makeµ the subjectof the equation, where the word ‘subject’ is used to mean the
term written by itself, usually to the left of the equals sign. Rearranging equations
is the first topic considered in Chapter 4. The rest of the chapter introduces methods
for simplifying equations and ways of combining two or more equations together,
and it ends with a look at ways of using algebra to solve problems.
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4.1 Rearranging equations

There are many different methods taught for rearranging equations, and if you are
happy with a method you have learnt previously it is probably best to stick with
this method, provided it gives correct answers to all the questions in this section.
However, if you have not found a way of rearranging equations which suits you,
you might like to try the method highlighted in the blue-toned boxes throughout
this section. This method draws on an analogy between an equation and an old-
fashioned set of kitchen scales, and considers the equation to be ‘balanced’ at the
equals sign. The scales will remain balanced if you add a 50 g mass to one side of
the scales, or halve the mass on one side,providedyou do exactly the same thing to
the other side. In a similar way, you can do (almost) anything you like to one side
of an equation and, provided you do exactly the same thing to the other side, the
equation will still be valid. This point is illustrated inFigure 4.1.

The following rule summarizes the discussion above:

Whatever you do mathematically to one side of an equation you must also do
to the other side.

This rule is fundamental when rearranging equations, but it doesn’t tell youwhat
operation to perform to both sides of an equation in order to rearrange it in the way
you want. The highlighted points below should help with this, as will plenty of
practice.
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Two things are worth noting at the outset:

1 Equations are conventionally written with the subject on the left-hand side of the
equals sign. However, when rearranging an equation it can very often be helpful
simply to reverse the order.

So if you derive or are given the equationc = a+b you can rewrite it asa+b = c;
if you derive or are given the equationab= c you can rewrite it asc = ab.

2 Even if you choose the ‘wrong’ operation, provided you correctly perform that
operation to both sides of the equation, the equation will still be valid. Suppose
we want to rearrange the equationc = a + b to obtain an expression fora. We
could divide by two, as illustrated byFigure 4.1c; this gives

c
2
=

a+ b
2

This is a perfectly valid equation; it just doesn’t help much in our quest fora. The
numbered points below give some hints for more helpful ways forward, and each
guideline is followed by an illustration of its use.

In the numbered hints the wordsexpressionandtermare used to describe the parts
of an equation. An equation must always include an equals sign, but an expression
or term won’t. A term may be a single variable (such asvx or ux in the equation
vx = ux + axt, or a combination of several variables (such asaxt); an expression is
usually a combination of variables (such asaxt or ux + axt, but the words are often
used interchangeably.
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Hint 1

If you want to remove an expression that isaddedto the term you want,sub-
tract that expression from both sides of the equation.

To rearrangea + b = c to makea the subject, note that we need to remove theb
from the left-hand side of the equation. Theb is currently added toa, so we need to
subtractb from both sides. This gives

a+ b− b = c− b

or

a = c− b (sinceb− b = 0)

Hint 2

If you want to remove an expression that issubtractedfrom the term you want,
add that expression to both sides of the equation.

To rearrangea−b = c to makea the subject, note that we need to remove theb from
the left-hand side of the equation. Theb is currently subtracted froma, so we need
to addb to both sides. This gives

a− b+ b = c+ b
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or

a = c+ b (since − b+ b = 0)

Hint 3

If the term you want ismultiplied by another expression,divideboth sides of
the equation by that expression.

To rearrangeab = c to makea the subject, note that we need to remove theb from
the left-hand side of the equation. Thea is currently multiplied byb, so we need to
divide both sides of the equation byb. This gives

ab
b
=

c
b

Theb in the numerator of the fraction on the left-hand side cancels with theb in the
denominator to give

a =
c
b

Hint 4

If the term you want isdividedby another expression,multiply both sides of
the equation by that expression.
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To rearrange
a
b
= c to makea the subject, note that we need to remove theb from

the left-hand side of the equation. Thea is currently divided byb, so we need to
multiply both sides of the equation byb. This gives

a× b
b
= c× b

Theb in the numerator of the fraction on the left-hand side cancels with theb in the
denominator to give

a = cb

Hint 5

If you are trying to make a term the subject of an equation and you currently
have an equation for thesquareof that term, take thesquare rootof both sides
of the equation.

To rearrangea2 = b to makea the subject, note that thea is currently squared, and
take the square root of both sides of the equation. This gives

a = ±
√

b

Note the presence of the± sign, indicating that the answer could be either positive
or negative, as discussed inSection 1.1.3. In practice, the reality of the problem we
are solving sometimes allows us to rule out one of the two values.
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Hint 6

If you are trying to make a term the subject of an equation and you currently
have an equation for thesquare rootof that term,squareboth sides of the
equation.

To rearrange
√

a = b to makea the subject, note that you currently have an equation
for the square root ofa, and square both sides of the equation. This gives

a = b2

Hints 1 to 6 all follow from a general principle:

To ‘undo’ an operation (e.g.+, −, ×, ÷, square, square root) you should do the
opposite, (i.e.−, +, ÷, ×, square root, square).

The following worked examples use the principles introduced in the numbered hints
above, in the context of equations which are frequently encountered in science.
Worked example 4.1 also involves substituting numerical values and units into the
equation once it has been rearranged.

Back J I 160



Contents �

Worked example 4.1

As discussed inBox 2.1, mass and weight are not the same. However, the mag-
nitude of the weight,W, of an object at the surface of the Earth and its mass,
m, are related by the equationW = mg. The magnitude of the acceleration due
to gravity,g, can be taken as 9.81 m s−2

A teenager’s weight is 649 N. What is his mass?

Answer

We need to start by rearrangingW = mgto makem the subject of the equation.
It is helpful to start by reversing the order of the equation, i.e. to write it as

mg=W

To isolatemwe need to get rid ofg, andm is currentlymultipliedby g so, from
Hint 3 we need todivideby g. Remember that we must do this toboth sides of
the equation, so we have

mg
g
=

W
g

Theg in the numerator of the fraction on the left-hand side cancels with theg
in the denominator to give
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m=
W
g

Substituting values forW andg gives

m=
649 N

9.81 m s−2

Since 1 N= 1 kg m s−2 (from Table 3.2) and

N

m s−2
=

kg��m�
�s−2

��m�
�s−2

we then have

m=
649 kg m s−2

9.81 m s−2
= 66.2 kg

So the teenager’s mass is 66.2 kg
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Worked example 4.2

The timeT for one swing of a pendulum is related to its length,L, by the
equation

T2 =
4π2L

g

whereg is the magnitude of the acceleration due to gravity. Write down an
equation forT.

Answer

T is currently squared, so fromHint 5, we need to take the square root of both
sides of the equation. This gives

T =

√
4π2L

g

SinceT is a period of time, its value must be positive, so we only need to write
down the positive square root.
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Question 4.1

(a) Rearrangev = fλ to makef the subject. Answer

(b) RearrangeEtot = Ek + Ep so thatEk is the subject. Answer

(c) Rearrangeρ =
m
V

to obtain an equation form. Answer
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When rearranging more complicated equations, it is often necessary to proceed in
several steps. Each step will use the rules already discussed, but many people are
perplexed when trying to decide which step to take first. Expertise in this area
comes largely with practice, and there are no hard and fast rules (it is often possible
to rearrange an equation by several, equally correct, routes). However, the following
guidelines may help:

Hint 7

Don’t be afraid of using several small steps to rearrange one equation.

Hint 8

Aim to get the new subject into position on the left-hand side as soon as you
can. (This will not always be possible straight away.) Simply reversing an
equation can sometimes be a helpful initial step.

Hint 9

You can treat an expression within brackets as if it was a single term. This
is true whether the brackets are shown explicitly in the original equation or
whether you have added them (or imagined them) for clarity. If the quantity
required as the subject is itself part of an expression in brackets in the original
equation, it is often best to start by making the whole bracketed term the subject
of the equation.
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Let’s look at these guidelines in the context of a series of worked examples, inter-
spersed with questions for you to try for yourself. Note that although ‘real’ science
equations have been used as much as possible in the worked examples and questions,
the symbols have not been explained, and you do not need to know the meaning of
them. This is to allow you to concentrate,for the time being only, on the algebra
rather than getting side-tracked into the underlying science.

You may be able to rearrange the equations in the following worked examples in
fewer steps than are shown, but if you are in any doubt at all it is best to write down
all the intermediate steps in the process.

Back J I 166



Contents �

Worked example 4.3

RearrangePV = nRT to give an equation forT.

Answer

This example is perhaps more straightforward than it looks, but it is best to
proceed in steps.

The first step is to reverse the equation so that theT is on the left-hand side
(from Hint 8). This gives

nRT= PV

We now need to remove thenR by which theT is multiplied. Dividing both
sides bynRgives

nRT
nR
=

PV
nR

ThenR in the numerator of the fraction on the left-hand side cancels with the
nR in the denominator to give

T =
PV
nR
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Worked example 4.4

Rearrangeρ =
m
V

so thatV is the subject.

Answer

The first step is to multiply both sides byV (thus gettingV into the right posi-
tion, as inHint 8). This gives

ρV =
mV
V

that is

ρV = m

Then dividing both sides byρ gives

ρV
ρ
=

m
ρ

that is

V =
m
ρ

Back J I 168



Contents �

Worked example 4.5

Rearrangevx = ux + axt to makeux the subject.

Answer

This equation can be written as

ux + axt = vx

which hasux on the left-hand side (Hint 8).

We can treat the expressionaxt as a single term (by considering there to be
brackets around it, as inHint 9) and subtract it from both sides of the equation
to give

ux + axt − axt = vx − axt

that is

ux = vx − axt
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Worked example 4.6

Rearrangeh = 1
2gt2 to give an equation fort.

Answer

We can consider there to be brackets around (t2) and start by finding an expres-
sion fort2 (Hint 9). The equation can be written as

1
2

gt2 = h

which hast2 on the left-hand side (Hint 8). Multiplying both sides by 2 gives

2×
1
2

gt2 = 2h

that is

gt2 = 2h

Dividing both sides byg gives

gt2

g
=

2h
g
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that is

t2 =
2h
g

Now we can take the square root of both sides to give

t = ±

√
2h
g
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Worked example 4.7

Rearrangevs =

√
µ

ρ
so thatµ is the subject.

Answer

We can consider there to be brackets around

(
µ

ρ

)
and start by finding an expres-

sion for

(
µ

ρ

)
(Hint 9).

The equation can be written as
√
µ

ρ
= vs, which has

µ

ρ
on the left-hand side

(Hint 8).

Squaring both sides gives

µ

ρ
= v2

s

Now we can multiply both sides byρ, to giveµ = v2
s ρ .

Back J I 172



Contents �

Box 4.1 Interlude: why bother with algebra?

You may have recognized the equation rearranged inWorked example 4.7; it
was the one discussed at the beginning of the chapter. Thinking back to the
beginning of the chapter reminds us of the purpose of what we are doing. The
ability to rearrange equations is useful (arguably the most useful skill devel-
oped in this course), but it’s not something that you should do just for the
sake of doing so, but rather because you want to work something out, and re-
arranging an equation is the means to this end. Suppose you have been told
that S waves pass through rocks of densityρ = 3.9× 103 kg m−3 with a speed
vs = 3.0× 103 m s−1, and you want to find the rigidity modulusµ. The equation

in the formvs =

√
µ

ρ
is not much use, but the rearranged form immediately

tells us that

µ = v2
s ρ

=
(
3.0× 103 m s−1

)2
×

(
3.9× 103 kg m−3

)
= 3.5× 1010 m2 s−2 kg m−3

= 3.5× 1010 kg m−1 s−2

So the rigidity modulus is 3.5× 1010 kg m−1 s−2.
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Question 4.2

(a) Rearrangeb = c− d + eso thate is the subject. Answer

(b) Rearrangep = ρgh to give an equation forh. Answer

(c) Rearrangev2
esc=

2GM
R

to makeR the subject. Answer

(d) RearrangeE = h f − φ so thatφ is the subject. Answer

(e) Rearrangea =
bc2

d
to give an equation forc. Answer

(f) Rearrangea =

√
b
c

to makeb the subject. Answer
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Question 4.3

The mass,m, speed,v, and kinetic energy,Ek, of an object are linked by the
equationEk =

1
2mv2.

(a) Rearrange this equation so thatv is the subject. Answer

(b) Use your answer to part (a) to estimate (in m s−1 to one signif-
icant figure) the speed needed in order for a tectonic plate of
mass 4× 1021 kg to have a kinetic energy of 2× 103 J.

Answer

(c) Use your answer to part (a) to estimate (in m s−1 to one signif-
icant figure) the speed needed in order for an athlete of mass
70 kg to have the same kinetic energy as the tectonic plate in
part (b).

Answer

The final group of worked examples in this section involve equations which may
appear rather more complex than the previous ones, but they can all be rearranged
using the rules and guidelines already introduced. Some, likeWorked example 4.8,
appear more complex partly because they use symbols that are rather unwieldy.
However, these final worked examples are genuinely more complicated too, and are
best solved by taking a logical stepwise approach (as the early Arab mathematicians
did; seeBox 4.2). Rearranging complicated equations is rather like peeling away
layers of an onion, systematically removing layer by layer in order to get to the part
you want. But that doesn’t mean it should end in tears!
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Box 4.2 Al-Khwarizmi and al-jabr

The techniques of algebra have developed over a period of several thousand
years, but the word ‘algebra’ comes from ‘al-jabr’ in the title of a book writ-
ten by Mohammed ibn-Musa al-Khwarizmi in about 830. The book, whose
title Hisab al-jabr w’al muqabela, can be translated as ‘Transposition and re-
duction’, explained how it was possible to reduce any problem to one of six
standard forms using the two processes, al-jabr (transferring terms to eliminate
negative quantities) and muqabela (balancing the remaining positive quanti-
ties).

Arab mathematicians like al-Khwarizmi did not use symbols in their work, but
rather explained everything in words. Nevertheless, their stepwise approach
was very similar to the one advocated in this course. Al-Khwarizmi is also
remembered for his work on the solution of quadratic equations, discussed later
in this chapter.

A little less working is shown in Worked examples 4.8, 4.9 and 4.10 than previously,
and hints are not explicitly referred to. This has been done so as to make the working
more akin to what you might reasonably write when working through the questions
in this course. You are encouraged to show as many steps as necessary in your
working, and to use words of explanation wherever they help you.
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Worked example 4.8

Rearrange∆G	m = ∆H	m − T∆S	m so that∆S	m is the subject.

(Note:∆G	m, ∆H	m and∆S	m each represent a single physical entity.)

Answer

AddingT∆S	m to both sides of the equation gives

∆G	m + T∆S	m = ∆H	m

Subtracting∆G	m from both sides gives

T∆S	m = ∆H	m − ∆G	m

Dividing both sides byT gives

∆S	m =
∆H	m − ∆G	m

T
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Worked example 4.9

Rearrangesx = uxt + 1
2axt2 to makeax the subject.

Answer

The equation can be written asuxt + 1
2axt2 = sx.

Subtractinguxt from both sides gives

1
2axt

2 = sx − uxt

Multiplying both sides by 2 gives

axt
2 = 2(sx − uxt)

Dividing both sides byt2 gives

ax =
2(sx − uxt)

t2
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Worked example 4.10

RearrangeFg = G
m1m2

r2
to give an equation forr.

Answer

Note thatFg = G
m1m2

r2
can be written asFg =

Gm1m2

r2
(seeSection 3.5.3).

We can get ther2 into position on the left-hand side by multiplying both sides
by r2. This gives

Fgr2 = Gm1m2

Dividing both sides byFg gives

r2 =
Gm1m2

Fg

Taking the square root of both sides gives

r = ±

√
Gm1m2

Fg
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Box 4.3 Using algebra in astronomy

The luminosity of a star (the total rate at which it radiates energy into space, in
all directions),L, is related to its radius,R, and the temperature (measured in
kelvin), T, of its outer layer (called the photosphere) by the equation

L = 4πR2σT4 (4.1)

whereσ (the lower case Greek letter sigma) represents a constant known as
Stefan’s constant, with the valueσ = 5.67× 10−8 W m−2 K−4.

It is impossible to take direct readings for the luminosity, radius or temperature
of distant stars, but indirect measurements can lead to values for photospheric
temperature and luminosity.Figure 4.2is a so-called Hertzsprung–Russell di-
agram, comparing the photospheric temperatures and luminosity of different
stars. Note that different types of stars appear in distinct groupings on the
Hertzsprung–Russell diagram.

If we know a star’s luminosity and photospheric temperature we can find its
radius from Equation 4.1, but first of all we need to rearrange the equation to
makeR the subject.
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Equation 4.1 can be reversed to give

4πR2σT4 = L

Dividing both sides by 4πσT4 gives

R2 =
L

4σT4

(Note that the same results would have been achieved by dividing by 4,π, σ
andT4 separately.)

Taking the square root of both sides gives

R= ±

√
L

4σT4

SinceR is the radius of a star, we are only interested in the positive value.

The star Alcyone (in the Pleiades) has a photospheric temperature of
1.2× 104 K and a luminosity of 3.2× 1029 W. So its radius is

R=

√
3.2× 1029 W

4× 5.67× 10−8 W m−2 K−4 ×
(
1.2× 104 K

)4
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R=

√
3.2× 1029 ��W

4× 5.67× 10−8 ��W m−2���K−4 (
1.2× 104)4 ��K4

=
√

2.17× 1019 m2

= 4.7× 109 m

The radius of Alcyone is 4.7× 109 m.

Notice that in this example, the units of watts cancelled without having to be
expressed in SI base units.

Question 4.4

(a) Rearrangevx = ux + axt so thatax is the subject. Answer

(b) Rearrangevs =

√
µ

ρ
to makeρ the subject. Answer

(c) RearrangeF =
L

4πd2
to give an equation ford. Answer
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4.2 Simplifying equations

Sometimes it is possible (and helpful) to write an algebraic expression in a different
form from the one in which it is originally presented. Whenever possible you should
aim to write equations in their simplest form, i.e. tosimplify them. For example,

you will see in this section that the equationc =
a
4b
+

3a
4b

can be simplified toc =
a
b

;

the latter form of the equation is rather more useful than the former.

In order to simplify equations it is often necessary to apply the rules for the manip-
ulation of fractions and brackets that were introduced in Chapter 1.

4.2.1 Simplifying algebraic fractions

Algebraic fractions can be multiplied and divided in exactly the same way as nu-
merical fractions, using the methods introduced inSection 1.2.4andSection 1.2.5.
So just as

2
3
×

4
5
=

2× 4
3× 5

=
8
15

(multiplying numerators and denominators together)

we can write

a
b
×

c
d
=

a× c
b× d

=
ac
bd
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Similarly, just as

2
3
÷

5
7
=

2
3
×

7
5

(turning the
5
7

upside down and multiplying)

=
2× 7
3× 5

=
14
15

we can write

a
b
÷

c
d
=

a
b
×

d
c

(turning the
c
d

upside down and multiplying)

=
a× d
b× c

=
ad
bc
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Worked example 4.11 illustrates a division in which several of the terms cancel.

Worked example 4.11

Simplify
2ab
c
÷

2
c

Answer

Turning the
2
c

upside down and multiplying gives

2ab
c
÷

2
c
=

2ab
c
×

c
2

We can cancel the ‘2’s and the ‘c’s to give

2ab
c
÷

2
c
=

AA2ab

�c
×

�c

AA2
= ab
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The method described inSection 1.2.2for adding and subtracting numerical frac-
tions can also be extended to algebraic fractions. We need to find a common de-
nominator in a similar way, so, much as we can write

2
3
+

4
5
=

2× 5
3× 5

+
4× 3
5× 3

=
10
15
+

12
15
=

10+ 12
15

=
22
15

where the common denominator is the product of the denominators of the original
fractions, we can also write

a
b
+

c
d
=

ad
bd
+

cb
db
=

ad+ cb
bd

Worked example 4.12

Electrical resistors can be combined together in various ways. You don’t need
to know or understand the scientific details, but when three resistors of resis-
tanceR1, R2 andR3 are combined in a particular way (‘in parallel’) the effective
resistance is given by the termReff in the equation

1
Reff
=

1
R1
+

1
R2
+

1
R3

(4.2)

Rearrange Equation 4.2 to makeReff the subject.

Answer

We need to start by expressing the right-hand side of Equation 4.2 as a single
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fraction. The product ofR1, R2 andR3 will be a common denominator, so we
can write

1
Reff
=

1
R1
+

1
R2
+

1
R3

=
R2R3

R1R2R3
+

R1R3

R1R2R3
+

R1R2

R1R2R3

=
R2R3 + R1R3 + R1R2

R1R2R3

In order to makeReff the subject of the equation, rather than
1

Reff
, we could mul-

tiply and divide both sides of the equations by a series of expressions. However,
it is more straightforward simply to turn the equation upside down, i.e. to take
the reciprocal of both sides. This gives

Reff =
R1R2R3

R2R3 + R1R3 + R1R2

A note of caution when simplifying algebraic expressions

When you simplify an algebraic expression, especially one involving fractions, the
answer you arrive at doesn’t always look very simple! If you are asked to simplify
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an expression which is the sum or product of two separate fractions, your answer
should normally be asinglefraction, but an expression like

Reff =
R1R2R3

R2R3 + R1R3 + R1R2

(the answer to Worked example 4.12) may be the simplest you can give. It can be
very tempting to ‘cancel’ terms incorrectly in an attempt to get to the sort of simple
fraction which is generally achievable when simplifying numerical fractions, but
less likely to be achievable when dealing with symbols.

Question

Express
2c
√

a
(a+ 2)

×
(b+ 2)

2c
√

b
as a single fraction of the simplest possible form.

Answer

We can cancel the ‘2c’s to give

��2c
√

a
(a+ 2)

×
(b+ 2)

��2c
√

b
=

√
a (b+ 2)

(a+ 2)
√

b

=

√
a (b+ 2)
√

b (a+ 2)

It can be tempting to ‘cancel’ the square roots and the ‘+2’s too, but this would
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be incorrect:
√

a
√

b
,

a
b

and
(b+ 2)
(a+ 2)

,
b
a

As discussed inSection 1.2.3, a fraction is unchanged by the multiplication
or the division of both its numerator and denominator by the same amount.
However,all other operations will alter its value.

So

√
a
b

(b+ 2)
(a+ 2)

is as far as it is possible to simplify
2c
√

a
(a+ 2)

×
(b+ 2)

2c
√

b
.

Note however that

√
a
b

is equivalent to

√
a
√

b
, so

√
a
√

b

(b+ 2)
(a+ 2)

can also be written

as

√
a
b

(b+ 2)
(a+ 2)

.
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Question 4.5

Simplify the following expressions, giving each answer as a single fraction.

(a)
µ0

2π
×

i1i2
d

Answer

(b)
3a
2b

/
2 Answer

(c)
2b
c
+

3c
b

Answer

(d)
2ab
c
÷

2ac
b

Answer

(e)
1
f
−

1
f + 1

Answer

(f)
2b2

(b+ c)
÷

2c2

(a+ c)
Answer

Back J I 190



Contents �

object

u

lens

v

image
of object
 on film

Figure 4.3: The object and image of a simple camera.

Question 4.6 Answer

The distance,u, of an object from a lens (such as the lens in the simple camera
illustrated in Figure 4.3) is related to the distance,v, from the lens to the image
of the object (on the film) and the lens’s focal length,f , by the equation

1
u
+

1
v
=

1
f

Add the fractions 1/u and 1/v and hence rearrange the equation to give an
expression forf .
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4.2.2 Using brackets in algebra

You should be familiar by now with the notion that an operation applied to an ex-
pression in a bracket must be applied toeverythingwithin the bracket, so

(2b)2 = 22b2 = 4b2

(a+ 2b) − (a+ b) = a+ 2b− a− b = b

(a+ 2b) − (a− b) = a+ 2b− a− (−b) = a+ 2b− a+ b = 3b

2(a+ 2b) = (2× a) + (2× 2b) = 2a+ 4b

and

2a(a+ 2b) = (2a× a) + (2a× 2b) = 2a2 + 4ab

If we need to multiply two bracketed expressions, such as (a+b) and (c+d) together,
we need to multiplyeachterm in the first bracket byeachterm in the second bracket
as indicated by the red lines shown below.

(a + b)(c + d)
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Multiplying the terms in order gives

(a + b)(c + d) = ac + ad + bc + bd
1

2

3

4

1 2 3 4

Worked example 4.13

Rewrite the following expressions so that the brackets are removed:

(a) (x− 3)(x+ 5)

(b) (x+ y)(x− y)

(c) (x+ y)2

(d) (x− y)2

Answer

(a) (x − 3)(x + 5) = x
2 + 5x − 3x − 15

= x
2 + 2x − 15

(b) (x + y)(x − y) = x 2 − xy + yx − y2

= x 2 − y2 since xy = yx , so − xy + yx = 0
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(c) (x + y)2 = (x + y)( x + y)

= x
2 + xy + yx + y

2

= x2 + 2xy + y2

(d) (x − y)2 = (x − y)( x − y)

= x
2 − xy − yx + y

2

= x2 − 2xy + y2

An examination of the answers to parts (b), (c) and (d) of Worked example 4.13
serves as a reminder of the fact that

(x+ y)2 , x2 + y2

(x− y)2 , x2 − y2

In other words, remember to watch out for brackets!
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Question 4.7

Rewrite the following expressions so that the brackets are removed:

(a)
1
2

(vx + ux) t Answer

(b)
(a− b) − (a− c)

2
Answer

(c) (k− 2)(k− 3) Answer

(d) (t − 2)2 Answer

So far, this section has discussed removing brackets from expressions, but it can
very often be useful to do the reverse.

The numbers 6 and 4 are described asfactorsof 24 and in general, when speaking
mathematically, ‘factors’ are terms which when multiplied together give the original
expression. Since, for example,

y (y+ 3) = y2 + 3y

we can say thaty and (y+ 3) are factors ofy2 + 3y
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Similarly, since

(x + 3)( x − 1) = x
2 − x + 3x − 3

= x
2 + 2x − 3

we can say that (x+ 3) and (x− 1) are factors ofx2 + 2x− 3.

The verb ‘tofactorize’ means to find the factors of an expression. If you are asked
to factorizey2 + 3y then you should write

y2 + 3y = y(y+ 3)

and if you are asked to factorizex2 + 2x− 3 you should write

x2 + 2x− 3 = (x+ 3)(x− 1)

Back J I 196



Contents �

Note, fromWorked example 4.13b, that the factors ofx2− y2 are (x+ y) and (x− y),
i.e.

x2 − y2 = (x+ y)(x− y) (4.3)

The difference of two squared numbers can always be written as the product of
their sum and their difference.

Question 4.8

Factorize the following expressions:

(a) y2 − y Answer

(b) x2 − 25 (Hint: you may find it helpful to compare this ex-
pression with Equation 4.3, remembering that 52 = 25.)

Answer

Factorizing can be useful when rearranging equations, as Worked example 4.14 il-
lustrates.
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Worked example 4.14

Rearrangeq = mc∆T +mL so thatm is the subject.

Answer

Both terms on the right-hand side of this equation includem, so we can rewrite
the equation as

q = m (c ∆T + L)

This can be reversed to give

m (c ∆T + L) = q

Now we divide both sides by (c ∆T + L) to give

m=
q

c ∆T + L

Question 4.9 Answer

RearrangeEtot =
1
2mv2 +mg∆h to give an equation form.
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An ability to factorize expressions such asy2 + 3y andx2 + 2x− 3 can also help us
to find the solutions of equations such asy2+3y = 0 andx2+2x−3 = 0. Equations
of this form are known as ‘quadratic equations’.

We know from above that

y2 + 3y = y (y+ 3) (4.4)

So if y2+3y = 0, it follows thaty (y+3) = 0 too. Multiplying by zero gives zero (as
discussed inSection 1.1.4). Soy (y+ 3) = 0 implies that eithery = 0 ory+ 3 = 0.

y+ 3 = 0 implies thaty = −3, so the solutions ofy2 + 3y = 0 arey = 0 andy = −3.

We can check thaty = 0 andy = −3 really are solutions of the equationy2+ 3y = 0,
by substituting each value fory into the left-hand side of the equation and verifying
that it gives 0, as expected.

For y = 0, y2 + 3y = 0+ 0 = 0, as expected.

For y = −3, y2 + 3y = (−3)2 +
(
3× (−3)

)
= 9+ (−9) = 0, as expected.

It is sensible to check your answers in this way:

You should check your answers whenever possible.
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Worked example 4.15

Use the fact that

x2 + 2x− 3 = (x+ 3)(x− 1) (4.5)

to find the solutions of the equationx2 + 2x− 3 = 0.

Answer

If x2 + 2x− 3 = 0 then, from Equation 4.5, (x+ 3)(x− 1) = 0

Thusx+ 3 = 0 or x− 1 = 0, i.e. x = −3 or x = 1.

Checking forx = −3:

x2 + 2x− 3 = (−3)2 + 2(−3)− 3 = 9− 6− 3 = 0, as expected.

Checking forx = 1:

x2 + 2x− 3 = 12 + (2× 1)− 3 = 1+ 2− 3 = 0, as expected.

So the solutions of the equationx2 + 2x− 3 = 0 arex = −3 andx = 1.
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Using factorization to solve quadratic equations relies on us being able to spot the
factors of an expression; this is quite easy for expressions likey2 + 3y (seeEqua-
tion 4.4), but if we had not known or been told thatx2 + 2x − 3 = (x + 3)(x − 1)
(Equation 4.5), finding the factors ofx2+2x−3 would have been largely a matter of
trial and error. An ability to find factors in this way can be developed with practice,
but it remains somewhat tedious and this method for solving quadratic equations
doesn’t work at all unless the solutions are whole numbers or simple fractions. For-
tunately help is at hand in the form of the ‘quadratic equation formula’, described
in Box 4.4.

Box 4.4 The quadratic equation formula

Al-Khwarizmi and other early Arab mathematicians developed general meth-
ods for solving quadratic equations. A quadratic equation of the form

ax2 + bx+ c = 0

will have solutions given by the quadratic equation formula

x =
−b±

√
b2 − 4ac

2a

If b2 > 4ac (i.e. b2 is greater than 4ac) thenb2 − 4ac will be positive, and the
formula will lead to two distinct solutions.
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If b2 = 4ac then b2 − 4ac= 0, so the two solutions will be identical
(x = −b/(2a)).

If b2 < 4ac (i.e. b2 is less than 4ac) thenb2− 4acwill be negative. This means
that the solutions will include the square root of a negative number. and hence
will involve ‘ imaginary numbers’. Such numbers were mentioned inChapter 1,
but will not be considered further inMaths for Science.

Worked example 4.16 demonstrates the use of the quadratic equation formula in
solving the equation that was solved by factorization in Worked example 4.15.

Worked example 4.16

Use the quadratic equation formula to find the solutions of the equation
x2 + 2x− 3 = 0.

Answer

Comparison of

x2 + 2x− 3 = 0

and

ax2 + bx+ c = 0
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shows thata = 1, b = 2 andc = −3 on this occasion, so the solutions are

x =
−b±

√
b2 − 4ac

2a

=
−2±

√
22 −

(
4× 1× (−3)

)
2× 1

=
−2±

√
4− (−12)
2

=
−2±

√
16

2

=
−2± 4

2

Sox =
−2+ 4

2
= 1

or x =
−2− 4

2
= −3

The solutions can be checked in exactly the same way as in Worked example
4.15.

Once again, we have found that the solutions of the equationx2 + 2x − 3 = 0
arex = −3 andx = 1.
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Question 4.10

(a) Use your answer toQuestion 4.7 (c)to solvek2 − 5k + 6 = 0
by factorization.

Answer

(b) Use your answer toQuestion 4.7 (d)to solvet2− 4t+ 4 = 0 by
factorization.

Answer

(c) Use the quadratic equation formula to check your answer to
part (a).

Answer

(d) Use the quadratic equation formula to check your answer to
part (b).

Answer

4.3 Combining equations

Consider the equationE = h f . This equation, first proposed by Einstein, links the
energy,E, of light to its frequency,f (h is a constant known as Planck’s constant).
Suppose that you knowh and are trying to findE, but that you don’t knowf . Instead
you know the values ofc (speed of light) andλ (wavelength) in a second equation,
c = fλ. It would be possible to calculate a value forf from the second equation
and then substitute this value in the first equation so as to findE. However, this
approach runs the risk of numerical slips and rounding errors. It is more useful to
do the substitutionalgebraically, in the way shown in the following example.
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Worked example 4.17

Combine the following two equations to find an equation forE not involving
f :

E = h f (4.6)

c = fλ (4.7)

Answer

Rearranging Equation 4.7 gives

f =
c
λ

Substituting this expression forf into Equation 4.6 gives

E = h×
c
λ
=

hc
λ

This mathematical technique, sometimes referred to aselimination(because a vari-
able, f on this occasion, is being eliminated), can be used in many situations, as
illustrated in the worked examples throughout this section.
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Worked example 4.18

CombineFg = G
Mm

r2
andFg = mgto give an equation forr not involvingFg.

Answer

Since both equations are already given withFg (the variable we are trying to
eliminate) as the subject, we can simply set the two equations forFg equal to
each other:

mg= G
Mm

r2

We now need to rearrange to give an equation forr. First note that there is an
mon both sides of the equation, so we can divide both sides of the equation by
m to give

g = G
M

r2

Multiplying both sides byr2 gives

gr2 = GM
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Dividing both sides byg gives

r2 =
GM

g

Taking the square root of both sides gives

r = ±

√
GM

g

Question 4.11

(a) CombineEk =
1
2mv2 and p = mv to give an equation forEk

not involvingv.
Answer

(b) CombineE = 1
2mv2 andE = mg∆h to give an equation forv

not involvingE.
Answer

(c) CombineEk = h f −φ andc = fλ to give an equation forφ not
involving f .

Answer
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Two (or more) different equations containing the same two (or more) unknown quan-
tities are called ‘simultaneous equations’ if the equations must be satisfied (hold
true) simultaneously. It is usually possible to solve two simultaneous equations by
using one equation to eliminate one of the unknown quantities from the second equa-
tion, in an extension of the method discussed above. This is illustrated in Worked
example 4.19.

Worked example 4.19

Find values ofx andy which satisfy both of the equations given below:

x+ y = 7 (4.8)

2x− y = 2 (4.9)

Answer

If we rewrite Equation 4.8 to give an equation fory in terms ofx, then we can
insert this result into Equation 4.9 to give an equation forx alone.

Subtractingx from both sides of Equation 4.8 gives

y = 7− x (4.10)
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Substituting fory in Equation 4.9 then gives

2x− (7− x) = 2

i.e. 2x− 7+ x = 2

or 3x− 7 = 2

Adding 7 to both sides gives

3x = 9, i.e. x = 3

Substitution ofx = 3 into Equation 4.10 shows that

y = 7− x = 7− 3 = 4

So the solution (i.e. the values forx andy for which both of the equations hold
true) isx = 3 andy = 4. We can check this by substituting the values forx and
y into the left-hand side of Equations 4.8 and 4.9.

Equation 4.8 givesx+ y = 3+ 4 = 7, as expected.
Equation 4.9 gives 2x− y = (2× 3)− 4 = 6− 4 = 2, as expected.

We could have arrived at the same result by using Equations 4.8 and 4.9 in a
different order, but there is only one correct answer.
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Worked example 4.19 shows that in order to find two unknown quantities, two dif-
ferent equations relating them are required. This is always true and by extension:

When you combine equations so as to find unknown quantities, it is always
necessary to have at least as many equations as there are unknown quantities.

Worked example 4.20 shows how four equations can be combined together in a case
where there are four unknown quantities (we are trying to find the total surface area,
S, but the mass,m, and volume,V, of a single particle and the number of particles,
n, are unknown too and so must be eliminated). This worked example concerns the
use of metal particles as catalysts in the chemical industry (see Box 4.5).

Box 4.5 Chemical catalysts

A catalyst is a substance which makes a chemical reaction proceed more
rapidly. The catalyst itself does not undergo permanent chemical change, and
it can be recovered when the chemical reaction is completed. Metal particles
can be used as catalysts. A large number of small particles will have a greater
surface area than a small number of larger particles, and the total surface area,
S, of the particles is of critical importance to the speed of the reaction. In a
typical industrial chemical reactor,S can be approximately 5000 km2; roughly
a third the area of Yorkshire!
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Worked example 4.20

The total surface area,S, of n metal particles of average radiusr is given by
the equation

S = 4πnr2 (4.11)

The number of particles n is linked to the mass of one particle,m and the total
mass of metal,M by the equation

n =
M
m

(4.12)

The massm of one particle is linked to its volumeV and the density of the
metalρ by the equation

ρ =
m
V

(4.13)

The volumeV of a particle is given by

V =
4
3
π r3 (4.14)

wherer is the radius.

Find an equation forS in terms ofM, ρ andr only.
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Answer

ReversingEquation 4.13gives

m
V
= ρ

Multiplying both sides byV gives

m= Vρ

Substituting forV from Equation 4.14gives

m=
4
3
π r3ρ

Substituting this expression form into Equation 4.12gives

n =
M
m

=
M

4
3π r3ρ

=
3M

4π r3ρ
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Substituting this expression forn into Equation 4.11gives

S = 4πnr2

=��4π ×
3M

��4πr�3ρ
× ��r2

=
3M
rρ

4.4 Putting algebra to work

So far, Chapter 4 has been concerned almost exclusively with symbols. Equations
have been given to you and you have been told to manipulate them in a particular
way. In the real scientific world, you are likely to need to:

1 Choose the correct equation(s) to use or derive equation(s) for yourself.

2 Combine, rearrange and simplify the equation(s) using the skills introduced in the
earlier sections of this chapter.

3 Substitute numerical values, taking care over things like significant figures, sci-
entific notation and units, as you did in Chapter 3.

4 Check that the answer is reasonable.
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The final section of this chapter considers these points, combining skills from Chap-
ters 3 and 4, but it starts with a more light-hearted look at the uses of algebra.

4.4.1 Algebra is fun!

Try this:

• Think of a number.

• Double it.

• Add four.

• Halve your answer.

• Subtract 1.

If you have arrived at an answer of 4, I can tell you that the number you first thought
of was 3; if your answer is 6, the number you first thought of was 5, if your answer
is 11, the number you first thought of was 10, and so on.

Magic? No, a demonstration of the power of algebra! We could perform exactly the
same operations foranynumber; let’s represent the number by the symbolN. Then
we have

• Think of a number. N

• Double it. 2N
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• Add four. 2N + 4

• Halve your answer. 1
2(2N + 4) = N + 2

• Subtract 1. (N + 2)− 1 = N + 1

So the final answer will always be one more than the number you first thought of.

Here’s another one for you to try:

• Think of a number.

• Add 5.

• Double the result.

• Subtract 2.

• Divide by 2.

• Take away the number you first thought of.

Whatever number you first thought of, the answer will always be four.
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Question 4.12 Answer

Use a symbol of your choice to represent the number in the ‘think of a number’
example immediately before this question and thus show that the answer will
be four, whatever number you choose at the beginning.

You may wonder why a course entitledMaths for Sciencehas suddenly started dis-
cussing number tricks. There is a serious point to this, namely to illustrate how you
can get from an initial problem to a solution by using algebra. Worked example 4.21
illustrates another use of algebra.

Worked example 4.21

Chris and Jo share a birthday (but are different ages). On their birthday this year
Chris will be five times older than Jo. Their combined age on their birthday last
year was 58. How old was Chris when Jo was born?

Answer

Let C represent Chris’s age in years on her birthday this year andJ represent
Jo’s age in years on her birthday this year.

Since Chris will be five times older than Jo we can say

C = 5J (4.15)
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Last year Chris’s age was (C − 1) and Jo’s age was (J − 1), so we can say

(C − 1)+ (J − 1) = 58

i.e. C + J − 2 = 58

C + J = 60 (4.16)

Substituting forC from Equation 4.15 in Equation 4.16 gives

5J + J = 60

i.e. 6J = 60

J = 10

Thus, from Equation 4.15,C = 5× 10= 50.

Thus Chris will be 50 this year and Jo will be 10. But this wasn’t the question
that was asked! When Jo was born, Chris was 50− 10, i.e. 40 years old.

You may remember questions like Worked example 4.21 from your school days.
Problems like this can seem intimidating, but they are relatively easy to solve once
you have found the equations that describe the problem. Many people struggle with
this first step — they can’t find the equations to use. Look at Worked example 4.21
carefully; all that has been done in order to derive Equation 4.15 and Equation 4.16
has been to study carefully the information given in the question, and to write it
down in terms of symbols. So ‘On their birthday this year Chris will be five times

Back J I 217



Contents �

older than Jo’ has becomeC = 5J. In solving problems, it is almost always helpful
to start by writing down what you already know. Drawing a diagram to illustrate the
situation can help too; you may find this helpful in Question 4.13.

Question 4.13 Answer

Tracey is 15 cm taller than Helen, and when Helen stands on Tracey’s shoulder
she can just see over a fence 3 m tall. Assume that it is 25 cm from Tracey’s
shoulder to the top of her head and 10 cm from Helen’s eyes to the top of her
head. How tall is Helen?

4.4.2 Using algebra to solve scientific problems

In much the same way as people struggle when trying to derive equations for use
in problems like Worked example 4.21, they often have difficulty deciding which
formulae to use from those given in a book or on a formula sheet. Again, it can be
helpful to draw a diagram and it isalwayshelpful to start by writing down what you
know and what you’re trying to find. This often helps you to decide how to proceed.

Worked example 4.22 discusses the choice of appropriate formulae for use in an-
swering a particular question. It also works through the other steps you are likely to
follow when using algebra to solve scientific problems.
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Worked example 4.22

A silver sphere (density 10.49 g cm−3) has a radius of 2.5 mm. What is its
mass? Use formulae given inBox 3.4.

Which equations shall we use?

We know density (ρ) and radius (r) and are trying to find mass (m), so we need

an equation to link these three variables.Equation 3.9, ρ =
m
V

, links density

and mass, but it also includesvolumewhich isn’t either given or required by
the question. Fortunately help is at hand in the form ofEquation 3.5, V =
4
3π r3 which gives the volumeV of a sphere of radiusr. We should be able to
substitute forV from Equation 3.5into Equation 3.9. This will give an equation
involving onlyρ, r andm, as required, and we can then rearrange it to makem
the subject.

Combining and rearranging equations

Substituting forV from Equation 3.5into Equation 3.9gives

ρ =
m

4
3π r3
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Multiplying top and botom of the fraction by 3 gives

ρ =
3m

4π r3

Reversing this so thatm is on the left-hand side gives

3m

4π r3
= ρ

Multiplying both sides by 4π r3 gives

3m= 4π r3ρ

Dividing both sides by 3 gives

m=
4
3
π r3ρ

Substituting numerical values

Note that we have used symbols for as long as possible in this question, so as to
avoid numerical slips and rounding errors. However, we are now almost ready
to substitute the values given forr andρ. First we need to convert the values
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given into consistent (preferably SI) units:

r = 2.5 mm= 2.5× 10−3 m

ρ = 10.49 g cm−3 = 10.49× 103 kg kg−3 (1.049× 104 kg kg−3 in scientific no-
tation), converting from g cm−3 to kg m−3 in the way described inSection 3.4.4.
Then

m=
4
3
π r3ρ

=
4
3
π

(
2.5× 10−3 m

)3
× 1.049× 104 kg kg−3

= 6.9× 10−4
��m3 kg���m−3

= 6.9× 10−4 kg

Is the answer reasonable?

It is always worth spending a few minutes checking whether the answer you
have arrived at is reasonable. There are three simple ways of doing this (it is
not normally necessary to use all three methods to check one answer):

1 We can check the units of the answer. We have given units next to all the
numerical values in the calculation, and the units on the right-hand side of
the equation have worked out to be kilograms, as we would expect for mass.
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If we had made a mistake in transposing the formula for mass, and had writ-
ten it asm= 4

3π r2ρ by mistake, then the units on the right-hand side would
have been m2 × kg m−3 = kgm−1. These are not units expected for mass by
itself, so we would have been alerted to the fact that something was wrong.

Checking units in this way provides a good way of checking that you have
written down or derived an equation correctly; the units on the left-hand
side of an equation should always be equal to the units on the right-hand
side. You can use this method for checking an equation even if you are not
substituting numerical values into it.

2 We can estimate the value (in the way described inSection 3.3), and compare
it with the answer found on a calculator. In this case

m≈
4
3
× 3

(
3× 10−3 m

)3
× 1× 104 kg m−3

≈
4

��3
× ��3× 33 × 10−9

��m3 × 1× 104 kg���m−3

≈ 4× 27× 10−9+4 kg

≈ 100× 10−5 kg

≈ 1× 10−3 kg

This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.
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3 We can look at the answer and see if it is what common sense might lead us to
expect. Obviously this method only works when you are doing a calculation
concerning physical objects with which you are familiar, but it gives a sen-
sible check for worked examples like the one we are considering. It seems
reasonable that a silver sphere with a diameter of 0.5 cm might have a mass
of something less than a gram. If you’d arrived at an answer of 1.1× 102 kg
(by forgetting to cube the value given forr) you might have thought that this
mass (equivalent to more than 100 bags of sugar!) was rather large for such
a small sphere.

Note that checking doesn’t usually tell you that your answer is absolutely
correct — none of the methods described above would have spotted small
arithmetic slips — but it does frequently alert you if the answer is wrong.
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Tips for using algebra to solve scientific problems

1 Start by writing down what you know and what you’re trying to find, and
use this information to find appropriate equations to use.

2 Combine, rearrange and simplify the equations, using symbols for as long as
possible so as to avoid numerical slips and rounding errors.

3 When you substitute numerical values, take care with units, scientific nota-
tion and significant figures.

4 Check that your final answer is reasonable, by asking yourself the following
questions:

(a) Are the units what you would expect?

(b) Is the answer similar to the one you have obtained by estimating?

(c) Is the answer about what you would expect from common sense?

Worked example 4.23 shows the use of these tips in solving a different problem, con-
cerning the conservation of energy. This worked example uses formulae introduced
in Box 4.6; you may also find these formulae useful when answering Question 4.14.
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Box 4.6 The conservation of energy

Energy can never be destroyed, but it is frequently converted from one form to
another. As a child climbs the steps of a slide, he or she gains in gravitational
potential energy; as he or she slides down the slide this energy is converted
into kinetic (movement) energy. As a kettle boils, the electrical energy in-
creases the energy of the water molecules and so raises the temperature of the
water. In both cases some energy is ‘lost’ to other forms (such as heat to the
surroundings and sound) but very often you can assume that all of the energy
initially in one form is converted to just one other form, and so equate for-
mulae (such as those given below) for different forms of energy. All forms
of energy should be quoted using the SI unit of energy which is the joule (J),
where 1 J= 1 kg m2 s−2.

The kinetic energy (energy of motion),Ek, of an object with a massm moving
at speedv is given by

Ek =
1
2mv2 (4.17)

The gravitational potential energy,Eg, of an object of massm at a height∆h
above a reference level is given by

Eg = mg∆h (4.18)

whereg is the acceleration due to gravity.
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The energy,q, needed to raise the temperature of a massm of a substance of
specific heat capacityc by a temperature∆T is given by

q = mc∆T (4.19)

Worked example 4.23

A lump of putty is dropped from a height of 4.8 m. The putty’s gravitational
potential energy is all converted into kinetic energy as it falls. If, on impact, all
of this kinetic energy is used to raise the temperature of the putty, by how much
does the temperature of the putty rise? Assume that the specific heat capacity
of the putty is 5.0× 102 J kg−1 K−1 and that the acceleration due to gravity is
9.81 m s−2.

Which equations shall we use?

It is tempting to involveEquation 4.17, as the question talks about the putty’s
kinetic energy, but closer inspection of the question reveals that we can assume
that all the gravitational potential energy becomes kinetic energy as the putty
falls, and that all the kinetic energy is transferred to heat energy in the putty on
impact. So we can say that all the gravitational potential energy is transferred
to heat energy; we simply need to setEquations 4.18and 4.19 equal to each
other. We have not been told the mass of the putty, but since the termmappears
in both Equation 4.18 and Equation 4.19 we will be able to cancel this term,
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which will leave us with an equation linkingg, ∆h, c and∆T. We knowg, ∆h
andc and are trying to find∆T.

Combining and rearranging equations

Since we can assume that all the gravitational potential energy,Eg, is trans-
ferred to heat energy,q, we can setEquation 4.18andEquation 4.19equal to
each other.

mc∆T = mg∆h

There is anm on both sides, so we can divide bym to give

c∆T = g∆h

Dividing both sides byc gives

∆T =
g∆h

c

Substituting numerical values

g = 9.81 m s−2

h = 4.8 m
c = 5.0× 102 J kg−1 K−1
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so

∆T =
g∆h

c

=
9.81 m s−2 × 4.8 m

5.0× 102 J kg−1 K−1

=
9.81× 4.8��m�

�s−2 × ��m

5.0× 102
��kg��m2

�
�s−2

���kg−1 K−1

= 0.094 K to two significant figures.

Is the answer reasonable?

In a real question you probably wouldn’t use all the checks described in the
blue-toned boxafter Worked example 4.22, but the answer seems about the
size you might expect (you wouldn’t expect a big temperature rise) and the
units have worked out to be kelvin, as expected for a change in temperature.

Alternatively we can estimate the answer to be

∆T ≈
10 m s−2 × 5 m

5× 102 J kg−1 K−1
≈ 10−1 K

This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.
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Question 4.14 Answer

A child climbs to the top of a 1.8 m slide and then slides to the ground. As-
suming that all of her gravitational potential energy is converted into kinetic
energy, find her speed as she reaches the ground. Takeg = 9.81 m s−2 and use
appropriate formulae fromBox 4.6.

In Worked example 4.24, the final worked example in Chapter 4, we return to a dis-
cussion of seismic waves travelling through the Earth’s crust (as introduced inBox
3.1). In this example there are three unknown quantities (the distance,d, from the
earthquake, the time,tp, taken for P waves to reach the seismometer and the time,
ts, taken for S waves to reach the seismometer) so we need to combine three equa-
tions to find any of the unknown quantities. You will not be expected to combine
more than two equations together in any questions associated with this course, but
Worked example 4.24 has been included because it summarizes much of what has
been discussed in Chapter 4, and also because it illustrates the usefulness of algebra
in science.

Box 4.7 Locating an earthquake

Figure 4.4shows a seismogram recorded at the British Geological Survey in
Edinburgh on 12 September 1988. It is possible to see the points at which P
waves and S waves first reached the seismometer. We can assume that these
seismic waves originated in an earthquake somewhere. But where was the
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earthquake and when did it occur? (although the recording was made at 2.23
p.m., it does not tell us the time at which the earthquake occurred, since the
waves will have taken some time to reach the seismometer from the point of
origin or focus of the earthquake).

Figure 4.4shows that the P waves reached the seismometer 20 seconds before
the S waves.

We assume that the P waves travelled with an average speed,vp = 5.6 km s−1

and that the S waves travelled with an average speedvs = 3.4 km s−1 (these
values are typical for the rocks of the Earth’s crust, through which the waves
will have been travelling).

average speed=
distance travelled

time taken

so vp =
d
tp

(4.20)

and vs =
d
ts

(4.21)

whered is the distance from the earthquake,tp is the time taken for P waves to
travel to the seismometer andts is the time taken for S waves to travel to the
seismometer.
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Worked example 4.24

Use the information given inBox 4.7 to find the distance from Edinburgh to
the focus of the earthquake recorded on the seismogram shown inFigure 4.4.

Which equations shall we use?

We know thatvp =
d
tp

(Equation 4.20) andvs =
d
ts

(Equation 4.21), where

vp = 5.6 km s−1 andvs = 3.4 km s−1, but d, tp andts are all unknown, so we
need another equation.

Although we don’t know the travel time of the two types of wave, we know
that the difference in the arrival time of the two waves is 20 seconds, so we can
write

t = ts− tp (4.22)

wheret = 20 s.

Equations 4.20, 4.21 and 4.22 give us three equations containing the three un-
knownsd, tp and ts and we need to combine and rearrange them to give an
expression ford.
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Combining and rearranging equations

Multiplying both sides ofEquation 4.20by tp gives

tpvp = d

Dividing both sides byvp gives

tp =
d
vp

Similarly, fromEquation 4.21,

ts =
d
vs

Substituting forts andtp in Equation 4.22gives

t = ts− tp

=
d
vs
−

d
vp

= d

(
1
vs
−

1
vp

)
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Combining the fractions by makingvsvp a common denominator
(Section 4.2.1) gives

t = d
(vp − vs)

vsvp

Reversing the equation so thatd is on the left-hand side gives

d
(vp − vs)

vsvp
= t

Multiplying both sides byvsvp gives

d (vp − vs) = t vsvp

Dividing both sides by (vp − vs) gives

d =
t vsvp

vp − vs

Back J I 233



Contents �

Substituting numerical values

Substitutingt = 20 s,vp = 5.6 km s−1 andvs = 3.4 km s−1 gives

d =
20 s× 3.4 km s−1 × 5.6 km s−1(

5.6 km s−1 − 3.4 km s−1)
=

20 s× 3.4 km s−1 × 5.6 km s−1

2.2 km s−1

= 1.7× 102 km to two significant figures

The units work out to be kilometres since�s× km�
�s−1 ×��km�

�s−1

��km�
�s−1

= km

Is the answer reasonable?

The units have worked out to be kilometres as expected for a distance. If we
had converted the speeds to values in ms−1, we would have obtained a value
for d in metres (d = 1.7× 105 m).

In this case it is easy to check that the answer is reasonable; many members of
the public reported a small earthquake on that day in Ambleside in Cumbria.
Ambleside is 170.5 km from Edinburgh!

In general, to use this method to uniquely identify the location of an earthquake
you need to repeat the exercise using data received at other seismometers else-
where on the Earth’s surface.
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4.5 Learning outcomes for Chapter 4

After completing your work on this chapter you should be able to:

4.1 demonstrate understanding of the terms emboldened in the text;

4.2 rearrange an algebraic equation to make a different variable the subject;

4.3 simplify an algebraic expression;

4.4 add, subtract, multiply and divide algebraic fractions;

4.5 re-write an algebraic expression so that the brackets are removed;

4.6 factorize a simple algebraic expression;

4.7 eliminate one or more variables so as to combine equations together;

4.8 check the answer to a problem by checking units, estimating an answer, or
comparing the answer with what would be expected from common sense.
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Using Graphs 5
This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

axis

bar chart

best-fit line

constant of proportionality

dependent variable

directly proportional

exponential decay

exponential growth
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extrapolation

function

gradient

graph

half-life

histogram

hyperbola

independent variable

intercept

interpolation

inversely proportional

origin

parabola

proportional

sketch graph

Back J I 237



Contents �

Angles and trigonometry 6
This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

acute angle

adjacent

arc

arccosine

arcsec

arcsine

arctangent

concentric
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cosine

degree

hypotenuse

inverse cosine

inverse sine

inverse tangent

inverse trigonometric function

latitude

longitude

minute

opposite

Pythagoras’ Theorem

radian

right angle

right-angled triangle

second
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similar

sine

small angle approximation

subtend

tangent

trigonometric ratios

trigonometry
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Logarithms 7
This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

common logarithm

exponential function

logarithm

logarithm to base 10

logarithm to base e

log-linear graph

log-log graph

natural logarithm
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Probability and descriptive statistics 8
This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

accurate

addition rule for probabilities

arithmetic mean

estimated standard deviation of a population

mean

median

mode

multiplication rule for probabilities
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normal distribution

population

precise

probability

random uncertainty

ratio

sample standard deviation

sample

skewed

standard deviation

systematic uncertainty

true mean
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Statistical hypothesis testing 9
This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

absolute value

alternative hypothesis

categorical level

χ2 test

contingency-table

correlation

correlation coefficient

critical value
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degrees of freedom

hypothesis

interval level

level of measurement

matched samples

null hypothesis

ordinal level

significance level

Spearman rank correlation coefficient (rs)

statistically significant

t-test

test of association

test of difference

test statistic

unmatched samples
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Differentiation 10
This chapter has not yet been imported into the document. The glossary references
that the chapter will include are listed below, so that links from the glossary back to
the text will not cause errors.

calculus

chord

derivative

derived function

differentiation

first derivative

second derivative

tangent
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Resolving vectors A
component

scalar

vector

modulus
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Glossary B
absolute-value The absolute value of a number is the number given without its+

or − sign.

accurate Description of a set of measurements for which thesystematic
uncertaintyis small. Compare withprecise.

acute-angle An angle of less than 90◦.

addition rule for probabilities A rule stating that if several possible outcomes are
mutually exclusive, the probability of one or other of these outcomes
occurring is found by adding their individual probabilities.

adjacent (trigonometry) The side other than the hypotenuse which is next to a
particular angle in aright-angled triangle.

algebra The process of using symbols, usually letters, to represent quantities and
the relationships between them.
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alternative hypothesis The logical ‘mirror image’ of thenull hypothesisproposed
at the start of a statistical hypothesis test (e.g. that the means of two
populations are not identical,µ1 , µ2 ).

arc A portion of a curve, particularly a portion of the circumference of a circle.

arccosine Seeinverse cosine.

arcsec An abbreviation for ‘second of arc’. A 60th part of aminuteof arc i.e. a
3600th part of adegree(of arc).

arcsine Seeinverse sine.

arctangent Seeinverse tangent.

arithmetic mean Measure of the average of a set of numbers. For a set ofn
measurements of a quantityx, the arithmetic meanx (often abbreviated to
‘the mean’) is defined as the sum of all the measurements divided by the total
number of measurements:

x =
1
n

n∑
i=1

xi

See also thetrue mean.

arithmetic operations The operations of addition, subtraction, multiplication and
division.
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axis (of a graph) A horizontal or vertical reference line which carries a set of
divisions. In the case of abar chartthe divisions may be a list of categories.
In the case of agraphthe divisions indicate alinearor logarithmic scale, and
are used to locate points on the graph.

bar chart A diagrammatic method of presenting data grouped into discrete
categories. The categories are listed along one axis (usually the horizontal
axis), and each category is represented by a bar (usually vertical). The bars
are separated by gaps, and their height (or length) isdirectly proportionalto
the number or percentage of things or events in each category. Compare with
histogram

base number When usingexponents, the quantity that is raised to a power, e.g. 5
is the base in the statement 5× 5× 5 = 53 anda is the base in the statement
a3 × a4 = a7.

best-fit line A line (usually a straight line) drawn on agraphand chosen to be the
best representation of the data as a whole. A best-fit line need not necessarily
go through any of the data points (although it will typically go through some
of them), and should be drawn in such a way that there are approximately the
same number of data points above and below the line.

calculus The branch of mathematics which includesdifferentiationand
integration.

cancellation The process of dividing both the numerator and denominator of a
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fraction by the same quantity. With numbers it may be quicker to use
cancellation than to work out the value of the numerator and denominator
separately, e.g.

5×��13

��13× 8
=

5
8

Cancellation is also useful in simplifying algebraic expressions or units, e.g.

�abc2

2�ad
=

bc2

2d

1 N��m
1 kg× 1��m

=
1��kg m s−2

1��kg
= 1 m s−2

categorical level A level of measurementin which the data comprise distinct
non-overlapping classes that cannot logically be ranked (e.g. presence versus
absence, male versus female). See alsoordinal level, interval level.

centi A prefix, used with units, to denote hundredths, and indicated by the symbol
c. Thus one centimetre, denoted 1 cm, is the hundredth part of a metre. Centi
is not one of the recognized submultiples in the system ofSI units, but is
nevertheless in common use, especially in association with units of length
and volume.

χ2 test (chi-squared test) A statistical hypothesis test used to determine whether
there is astatistically significantassociation between twocategorical level
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variables.

chord A line drawn between two points on a curve.

common denominator The same number or term occurring as thedenominatorof
two or more fractions. For example, the numerical fractions5

16 and 7
16 have

the common denominator 16. It is often necessary to useequivalent fractions
in order to find common denominators: for example2

5 ( = 6
15 =

12
30 ) and 8

15 (
= 16

30 ) have common denominators 15 and 30 (as well as many other
numbers). The algebraic fractionsa

b and c
d have the common denominator

b× d.

common logarithm Seelogarithm to base 10.

commutative An operation for which the result is unchanged if the order of terms
is reversed is described as commutative. Only two of thearithmetic
operationsare commutative: addition (a+ b = b+ a) and multiplication
(a× b = b× a).

complex number A number of the formn+mi, wheren is anyreal number, m is
any non-zero real number, andi =

√
−1.

component (of a vector) The component of avectoralong a chosenaxisis
obtained by drawing a line from the head of the arrow representing the vector
onto the axis, such that the line meets the axis in aright angle. For example,
thex-component of a vectora is ax = acosθ wherea is the magnitude of the
vector andθ is the angle between thex-axis and the direction of the vector.
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concentric Two circles are described as being concentric if they have the same
centre.

constant of proportionality The constantfactorthat is required to turn a
proportionality into anequation. Thedirect proportionalityof y ∝ x can be
written asy = kx, wherek is the constant of proportionality.

contingency table A table drawn up as part of aχ2 testin which ‘observed’ (Oi)
and ‘expected’ (Ei) numbers are compared. Contingency tables may be

extended by inclusion of columns for (Oi − Ei), (Oi − Ei)2 and
(Oi − Ei)2

Ei
.

conversion factor The number by which one needs to divide or multiply in order
to convert from one unit to another.

correlation Two variables atordinal levelor interval levelare said to be correlated
if, as the value of one variable increases, the value of the second variable
either increases (i.e. positive correlation) or decreases (i.e. negative
correlation). If the values of the two variables increase precisely in step with
one another, the positive correlation can be described as ‘perfect’. In a
‘perfect’ negative correlation, the value of one variable decreases precisely as
the other increases. Correlations may or may not bestatistically significant.

correlation coefficient The correlation coefficient (r) of a ‘perfect’ positive
correlationis +1, while that of a ‘perfect’ negative correlation is−1. When
there is complete lack of correlation between two variables,r = 0. For a
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positive correlation that is less than ‘perfect’, 1> r > 0. For a negative
correlation that is less than ‘perfect’, 0> r > −1.

cosine The cosine of an angleθ in a right-angled triangleis defined by

cosθ =
adjacent

hypotenuse

where ‘adjacent’ is the length of the side adjacent toθ and ‘hypotenuse’ is
the length of the hypotenuse.

critical value At a particular number ofdegrees of freedom(in many statistical
hypothesis tests), the critical value is the most extreme (usually the largest,
but in some statistical tests the smallest) value that thetest statisticis
expected to have for a particular significance level.

deci Prefix, used with units, to denote tenths, and indicated by the symbol d. Thus
one decibel, denoted 1 dB, is equal to one tenth of a bel. Deci is not one of
the recognized submultiples in the system ofSI units, but is commonly used
in certain areas: for example the concentration of a chemical dissolved in a
solvent is often expressed in units of moles per decimetre cubed (mol dm−3).

decimal notation Method of representing numbers, according to which the
integraland fractional parts of a number are separated by a decimal point.
The decimal point is written as a full stop, with the integral part of the
number to the left of it. The first digit after the decimal point indicates the
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number of tenths, the second indicates the number of hundredths, the third
the number of thousandths, etc.

decimal placesSeeplaces of decimals.

degree (of arc) A 360th of a complete revolution.

degree-CelsiusAn everyday unit of temperature, given the symbol◦C. Pure water
freezes at 0◦C and boils at 100◦C. Temperatures may be converted from
degrees Celsius to theSI unit of temperature, kelvin, using theword equation
(temperature in kelvin)= (temperature in degrees Celsius)+ 273.15

degrees of freedomA device used in many statistical hypothesis tests to allow for
the fact that the more data that are collected, the more scope there is for the
test statisticto deviate from the value expected (generally, zero) if thenull
hypothesiswere true.

denominator The number or term on the bottom of a fraction. For example, in the

fraction
1

2π
, the denominator is 2π; in the fraction

mn
pq

, the denominator is

pq. See also:numerator.

dependent variable A quantity whose value is determined by the value of one or
more other variables. On agraph, the dependent variable is, by convention,
plotted along the verticalaxis. Compare with:independent variable.

derivative The derivative (or derived function) of afunction f (x) with respect tox
is another function ofx that is equal to the rate of change off (x) with respect
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to x. Its value at any given value ofx is equal to the ratio
∆ f
∆x

in the limit as

∆x becomes very small, and is usually written as
d f
dx

or f ′(x). The value of

d f
dx

at each value ofx is also equal to the gradient of the graph off plotted

againstx at that value ofx. A derivative of the type is sometimes called the
first derivative to distinguish it from the second derivative of the function.

derived function Seederivative.

differentiation A mathematical process that enables thederivativeof a functionto
be determined.

directly proportional (quantities) Two quantitiesx andy are said to be directly
proportional to each other if multiplying (or dividing)x by a certain amount
automatically results iny being multiplied (or divided) by the same amount.
Direct proportionality betweenx andy is indicated by writingy ∝ x. The
direct proportionality can also be written as an equation of formy = kx,
wherek is a constant called theconstant of proportionality. A graphin which
y is plotted againstx will be a straight line withgradientequal tok. See also
inversely proportional.

elimination A method of combining two or moreequationsby eliminating
variablesthat are common to them.

equation An expression containing an equals sign. What is written on one side of
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the equation must always be equal to what is written on the other side.

equivalent fractions Fractions that have the same value, e.g.2
3, 4

6, 8
12, 20

30, etc.

estimated standard deviation of a populationThe best estimate that can be
made for thestandard deviationof some quantity for a wholepopulation.
This estimate is usually set equal tosn−1, which is calculated from
measurements of the quantity made on an unbiasedsampledrawn from the
population. If the sample consists ofn members and the quantityx is
measured once for each member, then

sn−1 =

√√
1

n− 1

n∑
i=1

(xi − x)2

wherex is thearithmetic meanof the measurements. The symbolσn−1 is
also widely used (especially on calculators) as an equivalent tosn−1.

evaluate An instruction to work out the value of an expression.

exponent When raising quantities to powers, the number to which a quantity is
raised, e.g. in the term 23, the exponent is 3.

exponential decayDecay in which the time taken for a quantity to fall to half its
original value is always the same; this time is known as thehalf-life. A
quantityN with an initial value ofN0 at timet = 0 decays exponentially if
N = N0e−λt, whereλ is a constant known as the decay constant.
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exponential function A functionof the typey = Cekx whereC andk are

constants. A function of this type has the property that
dy
dx

is proportional to
y.

exponential growth Growth in which the quantity being measured increases by a
constant factor in any given time interval. A quantityn with a starting value
of n0 at timet = 0 grows exponentially ifn = n0eat, wherea is a positive
constant.

expression A combination of variables (such asaxt or ux + axt). Unlike an
equation, an expression is unlikely to contain an equals sign.

extrapolation The process of extending a graph beyond the highest or lowest data
points in order to find the values of one or both of the plotted quantities
outside the original range within which data were obtained.

factor A termwhich when multiplied to other terms results in the original
expression, so 6 and 4 are factors of 24 and (a− 3) and (a+ 5) are factors of
a2 + 2a− 15.

factorize To find thefactorsof anexpression.

first derivative Seederivative.

formula A rule expressed in algebraic symbols.

fraction A number expressed in the form of oneintegerdivided by another, e.g.
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1
4

;
3
8

;
21
13

. One algebraictermdivided by another may also be described as a

fraction. See also:improper fraction, mixed number, equivalent fractions,
numeratoranddenominator.

function If the value of avariable f depends on the value of another variablex,
then f is said to be a function ofx and is written asf (x). In general, there is
only one value off (x) for each value ofx.

gradient (of a graph) The slope of a line on agraph. The gradient is a measure of
how rapidly the quantity plotted on the verticalaxischanges in response to a
change in the quantity plotted on the horizontal axis. If the graph is a straight
line, then the gradient is the same at all points on the line and may be
calculated by dividing the vertical ‘rise’ between any two points on the line
by the horizontal ‘run’ between the same two points. If the graph is a curved
line, the gradient at any point on the curve is defined by the gradient of the
tangentto the curve at that point. See also:derivative.

graph A method of illustrating the relationship between two variable quantities by
plotting the measured values of one of the quantities using alinearor
logarithmic scalealong a horizontalaxis, and the measured values of the
other quantity using a linear or logarithmic scale along a vertical axis. See
also:dependent variable, independent variable, sketch graph.

half-life The time taken for half the nuclei in a radioactive sample to decay. See
alsoexponential decay.
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histogram A diagrammatic method of presenting data, in which the horizontal
axisis divided into (usually equal) intervals of a continuously variable
quantity. Rectangles of width equal to the interval have a height scaled to
show the value of the quantity plotted on the vertical axis that applies at the
particular interval. For example, the intervals could be the months in the year
and the vertical axis could represent themean(monthly) rainfall in
millimetres. Compare withbar chart.

hyperbola A curve, part of which may be obtained by plottinginversely
proportionalquantities against each other on a.

hypotenuse The side opposite to theright-anglein a right-angled triangle.

hypothesis A plausible idea tentatively put forward to explain an observation.
Traditionally, a hypothesis is tested by making predictions that would follow
if the hypothesis is correct. If these predictions are borne out by experiment
or further observation, then this lends weight to the hypothesisbut does not
prove it to be correct. If the predictions are not borne out, then the
hypothesis is either rejected or modified.

imaginary number A number of the formmi, wherem is any non-zeroreal
numberandi =

√
−1.

improper fraction A fraction in which thenumeratoris greater than the

denominator, e.g.
12
7

. An improper fraction may also be written as amixed

number.
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independent variable The quantity in an experiment or mathematical
manipulation whose value(s) can be chosen at will within a given range. On
agraph, the independent variable, is by convention, plotted along the
horizontalaxis. Compare withdependent variable.

index (plural indices) Seeexponent.

integer A positive or negative whole number (including zero).

integral Pertaining to an integer. For example the statement thatm can take
integral values from−2 to+2 means that the possible values ofmare−2,−1,
0, 1 and 2.

intercept The value on oneaxisof agraphat which a plotted straight line crosses
that axis, provided that axis does pass through the zero point on the other
axis. If the plotted line has an equation of formy = mx+ c, the intercept on
they axis is equal toc.

interpolation The process of reading between data points plotted on agraph, in
order to find the value of one or both of the plotted quantities at intermediate
positions.

interval level A level of measurementin which theactualvalues of measurements
or counts are known and used in statistical analysis (e.g. dry mass in grams,
number of flowers per plant). See alsocategorical level, ordinal level.

inverse cosinex is the inverse cosine (arccosine) ofy if x is the angle whose
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cosineis y. i.e. x = cos−1 y (x = arccosy) if y = cosx.

inverse sine x is the inverse sine (arcsine) ofy if x is the angle whosesineis y. i.e.
x = sin−1 y (x = arcsiny) if y = sinx.

inverse tangent x is the inverse tangent (arctangent) ofy if x is the angle whose
tangentis y, i.e. x = tan−1 y (x = arctany) if y = tanx.

inverse trigonometric function If y is atrigonometric ratioof the anglex, thenx
is the inverse trigonometric function ofy. For example, ify = sinx, the
inverse trigonometric function isx = sin−1 y (or arcsiny) where sin−1 y
(arcsiny) is the angle whose sine isy.

inversely proportional (quantities) Two quantitiesx andy are said to be inversely
proportional to each other if an increase inx by a certain factor automatically
results in a decrease iny by the same factor (e.g. if the value ofx doubles,
then the value ofy halves). Inverse proportionality betweenx andy is

indicated by writingy ∝
1
x
. A graph in whichy is plotted againstx will be a

hyperbola. See also:directly proportional.

irrational number A number that cannot be obtained by dividing oneintegerby
another, e.g.π,

√
2 and e. See alsorational number.

latitude Part of the specification of the position of a point on the Earth’s surface:
the distance north or south of the Equator measured indegrees. A line of
latitude is an imaginary circle on the surface of the Earth.
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level of measurementThe three levels of measurement that data may be known or
analysed at arecategorical level, interval levelor ordinal level.

linear scale A scale on which the steps between adjacent divisions correspond to
the addition or subtraction of a fixed quantity.

logarithm The logarithm of a number to a given base is the power to which the
base must be raised in order to produce the number.

logarithm to base 10 The logarithm to base 10 (or ‘common logarithm’, log10) of
p is the power to which 10 must be raised in order to equalp. i.e. if p = 10n,
then log10 p = n.

logarithm to base e The logarithm to base e (or ‘natural logarithm’) ofp is the
power to which e must be raised in order to equalp, i.e. if p = eq, then
ln p = q.

logarithmic scale Scale on which the steps between adjacent divisions correspond
to multiplication or division by a fixed amount, usually a power of ten.

log-linear graph A graphof thelogarithmof one quantity against the actual value
of another quantity. For anexponential functionof the typey = Cekx, graphs
of log10 y againstx and of lny againstx will both be straight lines.

log-log graph A graphof thelogarithmof one quantity against the logarithm of
another quantity. For afunctionof the typey = axb (e.g.y = 2x3) graphs of
log10 y against log10 x and of lny against lnx will both be straight lines.
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longitude Part of the specification of the position of a point on the Earth’s surface.
A line of longitude is an imaginary semicircle that runs from one pole to the
other. The line of zero longitude passes through Greenwich in London.
Other lines of longitude are specified by the angle east or west of the line of
zero longitude.

lowest common denominatorThe smallestcommon denominatorof two or more
fractions.

magnitude The size of a quantity, also referred to as the ‘modulus’.Vector
quantities have both magnitude and direction;scalarquantities have only
magnitude.

matched samplesWhen data are collected from twosamplessuch that each item
of data from one sample can be uniquely matched with just one item of data
from the other sample (e.g. blood glucose levels measured in individuals
before and after they have taken medication), the samples are described as
matched. See alsounmatched samples.

mean Term commonly used as an abbreviation forarithmetic mean.

median The middle value in a series when the values are arranged in either
increasing or decreasing order. If the series contains an odd number of items,
the median is the value of the middle item; if it contains an even number of
items, the median is thearithmetic meanof the values of the middle two
items.
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minute (of arc) A 60th part of andegree(of arc).

mixed number A number consisting of a non-zerointegerand afraction, e.g. 3
1
2

.

Any improper fractionmay also be written as a mixed number: for example
8
3
= 2

2
3

.

mode The most frequently occurring value in a set of data.

modulus Seemagnitude.

multiplication rule for probabilities A rule stating that if a number of outcomes
occur independently of one another, theprobabilityof them all happening
together is found by multiplying the individual probabilities.

natural logarithm Seelogarithm to base e.

normal distribution Distribution of measurements or characteristics which lie on
a bell-shaped curve that is symmetric about its peak, with the peak
corresponding to themeanvalue. Repeated independent measurements of
the same quantity approximate to a normal distribution, as do quantitative
characters in natural populations (e.g. height in human beings).

null hypothesis A ‘no difference’ hypothesis proposed at the start of a statistical
hypothesis test (e.g. that themeansof two populationsare identical,
µ1 = µ2). Compare withalternative hypothesis.

numerator The number or term on the top of a fraction. For example, in the
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fraction
3
4

, the numerator is 3; in the fraction
a+ b

c
, the numerator isa+ b.

See alsodenominator.

opposite (trigonometry) The side opposite to a particular angle in aright-angled
triangle.

order of magnitude The approximate value of a quantity, expressed as the nearest
power of ten. If the value of the quantity is expressed inscientific notationas
a× 10n, then the order of magnitude of the quantity is 10n if a < 5 and 10n+1

if a > 5. The phrase is also used to compare the sizes of quantities, as in ‘a
metre is three orders of magnitude longer than a millimetre’ or ‘a picogram
is twelve orders of magnitude smaller than a gram’.

ordinal level A level of measurementin which the data can be logically ranked
but in which theactualvalues of the measurements or counts are either not
known or not used in statistical analysis (e.g. tallest to shortest, heaviest to
lightest). See alsocategorical level, interval level.

origin (of a graph) The point on a graph at which the quantities plotted on the
horizontalaxisand the vertical axis are both zero.

parabola A curve that may be described by an equation of the form
y = ax2 + bx+ c, wherex andy are variables,a is a non-zero constant, andb
andc are constants that may take any value.

percentage A way of expressing a fraction with adenominatorof 100. For
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example, 12 per cent (also written 12%) is equivalent to twelve parts per

hundred or
12
100

.

places of decimalsIn decimal notation, the number of digits after the decimal
point (including zeroes). Thus 21.327 and 3.000 are both given to three
places of decimals.

population Statistical term used to describe the complete set of things or events
being studied.

power Seeexponent.

powers of ten notation A method of representing a number as a larger or smaller
number multiplied by ten raised to the appropriate power. For example, 2576
can be written in powers of ten notation as 25.76× 102 or 2.576× 103, or
0.02576× 105 or 257600× 10−2. See alsoscientific notation.

precise Description of a set of measurements for which the random uncertainty is
small. Compare withaccurate.

probability If a process is repeated a very large number if times, then the
probability of a particular outcome may be defined in terms of results
obtained as the fraction of results corresponding to that particular outcome.
If the process has n equally likely outcomes and q of those outcomes
correspond to a particular event, then the probability of that event is defined
as q/n. There are, for example, 6 equally likely outcomes for the process of
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rolling a fair die. Only one of those outcomes corresponds to the event
‘throwing a six’, so the probability of throwing a six is16. Five of the
outcomes correspond to the event ‘not throwing a six’, so the probability of
not throwing a six is5

6.

product The result of a multiplication operation. For example, the product of 3
and 5 is 15.

proportional Seedirectly proportional, inversely proportional.

Pythagoras’ Theorem The square of thehypotenuseof a right-angled triangleis
equal to the sum of the squares of the other two sides.

quadratic equation An algebraicequationfor x of the formax2 + bx+ c = 0,
wherea , 0 andb andc can take any value. For example, 2x2 − x+ 3 = 0 is
a quadratic equation.

quadratic equation formula Thesolutionsof aquadratic equationof the form
ax2 + bx+ c = 0 are given by the formula

x =
−b±

√
b2 − 4ac

2a

radian The anglesubtendedat the centre of a circle by an arc equal in length to
the radius. In general, the angleθ subtended by an arc lengths in a circle of

radiusr is given byθ (in radians)=
s
r
.
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random uncertainty Measured values of one quantity that are scattered over a
limited range about ameanvalue are said to be subject to random
uncertainty. The larger the random uncertainty associated with the
measurements, the larger will be the scatter. See alsopreciseandsystematic
uncertainty.

ratio The relationship between the sizes of two comparable quantities. For
example, if a group of 11 people is made up of 8 women and 3 men, the ratio
of women to men is said as 8 to 3 and written as 8 : 3. Ratios may be fairly

easily converted intofractions. In this particular example
8

8+ 3
=

8
11

of the

group are women and
3
11

are men.

rational number Any number that can be written in the form
a
b

, wherea andb are

integersandb , 0, e.g. 7=
7
1

; −6 =
−6
1

; −
1
3

; 3.125=
25
8

. Every terminating

or recurring decimalis a rational number. See also:irrational number.

real number A number that can be placed on the number line. The set of real
numbers is made up of all therationalandirrational numbers.

reciprocal A termthat is related to another as
2
3

is related to
3
2

. The reciprocal of
y
x

is
x
y

, and vice versa, for any non-zero values ofx andy. The reciprocal of

Nm is N−m and vice versa.
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recurring decimal A number in which the pattern of digits after the decimal point
repeats itself indefinitely. Every recurring decimal is arational numberand

can therefore be written as a fraction, e.g. 0.3333. . . =
1
3

;

0.123 123 123. . . =
41
333

; 0.2345 2345 2345. . . =
2345
9999

.

right angle The angle between two directions that are perpendicular (i.e. at 90◦)
to each other.

right-angled triangle A triangle where the angle between two of the sides is a
right angle.

rounding error An error introduced into a calculation by working to too few
significant figures. To avoid rounding errors you should work to at least one
more significant figure than is required in the final answer, and just round at
the end of the whole calculation.

sample Statistical term used to describe an unbiased sub-set of apopulation.

sample standard deviation Seeestimated standard deviation of a population.

scalar A quantity withmagnitudebut no direction. Compare withvector.

scientific notation Method of writing numbers, according to which anyrational
numbercan be written in the forma× 10n wherea is either anintegeror a
number written indecimal notation, 1 ≤ a < 10, andn is aninteger. Thus
5 870 000 may be written in scientific notation as 5.87× 106, and 0.003 261
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may be written in scientific notation as 3.261× 10−3. The terms ‘standard
form’ and ‘standard index form’ are equivalent to the term scientific notation.

second (of arc) Seearcsec.

second derivative A derivativeof a derivative, for example the derivative of
d f
dx

with respect tox. A second derivative is usually written as or
d2 f

dx2
or f ′′(x).

SI units An internationally agreed system of units. In this system, there are seven
base units (which include the metre, kilogram and the second) and an
unlimited number of derived units obtained by combining the base units in
various ways. The system recognizes a number of standard abbreviations (of
which SI, standing for Système International, is one). The system also uses
certain standard multiples and submultiples, represented by standard
prefixes. See alsocentianddeci.

significance levelThe probability that the value of atest statisticcould be as
extreme (usually as large, but in some statistical tests as small) as the value
obtained in a statistical hypothesis test if thenull hypothesiswere true.

significant figures The number of digits, excluding leading zeroes, quoted for the
value of a quantity, and defined as the number of digits known with certainty
plus one uncertain digit. Thus if a measured temperature is given as 23.7◦C
(i.e. quoted to three significant figures) this implies that the first two digits
are certain, but there is some uncertainty in the final digit, so the real
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temperature might be 23.6◦C or 23.8◦C. The larger the number of significant
figures quoted for a value, the smaller is the uncertainty in that value.
Leading zeroes in decimal numbers do not count as significant figures (e.g.
0.002 45 is expressed to three significant figures). Numbers equal to or
greater than 100 can be unambiguously expressed to two significant figures
only by the use ofscientific notation(e.g. 450 can only be unambiguously
expressed to two significant figures by writing it in the form 4.5× 102).
Similarly, scientific notation must be used to express numbers equal to or
greater than 1000 unambiguously to 3 significant figures.

similar Two triangles (or other objects) are described as being similar if they have
the same shape but different size.

simplify To write anequationor expressionin its simplest form.

simultaneous equationsTwo or moreequationswhich must hold true
simultaneously.

sine The sine of an angleq in a right-angled triangleis defined by

sin(θ) =
opposite

hypotenuse

where ‘opposite’ is the length of the sideoppositeθ and ‘hypotenuse’ is the
length of thehypotenuse.

sketch graph A graphdrawn to illustrate the nature of the relationship between
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quantities, but not involving accurate plotting. On a sketch graph theorigin is
usually indicated, but theaxesare not scaled.

skewed Description of distributions that are not symmetric about theirmeanvalue.

small angle approximation For small angles (less than about 0.1 radian)
cosθ ≈ 0, and if the angle is stated inradians, sinθ ≈ θ, tanθ ≈ θ.

solution The answer, especially numerical value or values which satisfy an
algebraicequation.

solve To find an answer, usually to find the numerical values which satisfy an
algebraicequation.

Spearman rank correlation coefficient (rs) A test statisticcalculated in a
statisticalhypothesistest used to determine whether or not there is a
statistically significantcorrelationbetween twoordinal levelvariables.

square root The number or expression that multiplied by itself givesN is called
the square root ofN. The positive square root ofN can be written as either
√

N or N
1
2 .

standard deviation A quantitative measure of the spread of a set of
measurements. Forn repeated measurements of a quantity, with arithmetic
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meanx, the standard deviationsn is given by

sn =

√√
1
n

n∑
i=1

(xi − x)2

The symbolσn is also widely used (especially on calculators) as an
equivalent tosn. See also:sample standard deviation, estimated standard
deviation of a population.

standard form Seescientific notation.

standard index form Seescientific notation.

statistically significant In science, the result of a statistical hypothesis test is
conventionally regarded as statistically significant if theprobabilityof the
value of thetest statisticbeing as large (or, in some statistical tests, as small)
as the one obtained is less than 0.05.

subject The term written by itself, usually to the left of the equals sign in a
mathematicalequation.

subtend A straight line rotating about a certain point is said to subtend the angle it
passes through.

sum The result of an addition operation. For example, the sum of 3 and 2 is 5. A
summation sign may be used as shorthand for more complicated addition
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operations, e.g.

n∑
i=1

xi = x1 + x2 + . . . + xn.

systematic uncertainty Measured values of one quantity that are consistently too
large or too small because of bias in the measuring instrument or the
measurement technique are said to be subject to systematic uncertainty. See
alsoaccurate, random uncertainty.

t-test One of a number of statistical tests of ahypothesisused to determine
whether there is astatistically significantdifference between the estimated
population means calculated from twosamples. Different versions of the test
are available formatched samplesandunmatched samples.

tangent (to a curved graph) The tangent to a curve at a given point P is the straight
line that just touches the curve at P and has the samegradientas the curve at
the point P.

tangent (trigonometry) The tangent of an angleθ in a right-angled triangleis
defined by

tanθ =
opposite
adjacent

where ‘opposite’ is the length of the sideoppositeand ‘adjacent’ is the
length of the sideadjacentto θ.
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term A singlevariable(such asvx or ux in the equationvx = ux + axt) or a
combination of variables, such asaxt.

test of associationA statisticalhypothesistest used to determine whether there is
astatistically significantassociation between twocategorical levelvariables
(e.g.χ2 test) or a statistically significantcorrelationbetween two variables at
ordinal level(e.g.Spearman rank correlation(rs)) or atinterval level(other
correlation coefficients(r)).

test of difference A statisticalhypothesistest used to test whether there is a
statistically significantdifference between, for example, the estimated
population means (e.g.t-tests) or estimated populationmedians(other tests)
calculated from two samples.

test statistic In most statistical tests of ahypothesis, the value of a test statistic is
calculated using anequation. The value of the test statistic is then compared
with a table ofcritical valuesin order to determine whether thenull
hypothesisought to be accepted or rejected at a particularsignificance level.

trigonometric ratios The ratios of the sides of aright-angled triangle, including
tangent, sine, cosine.

trigonometry The branch of mathematics which deals with the relations between
the sides and angles of triangles, usuallyright-angled triangles.

true mean Thearithmetic meanof some quantity for a wholepopulation, usually
denoted by the symbolµ. For a large population, the true mean is generally
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unknowable and the best estimate that can be made of it is the mean of the
quantity for an unbiasedsampledrawn from the population.

unmatched samplesWhen data are collected from two samples such that there is
no logical connection between any particular item of data from one sample
and any particular item of data from the other sample (e.g. the heights of
plants randomly assigned to either an experimental or a control group), the
samples are described as unmatched. See alsomatched samples.

variable A quantity that can take a number of values.

vector A physical quantity that has a definitemagnitudeand points in a definite
direction.

word equation An equationin which the quantities under consideration are
described in words.
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Hidden material

This ‘chapter’ contains material which you won’t normally read through in se-
quence, but will access it through the links from the main text.
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Question 1.1 (a)

(−3)× 4 = −12

Back 279



Contents �

Question 1.1 (b)

(−10)− (−5) = −5
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Question 1.1 (c)

6÷ (−2) = −3
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Question 1.1 (d)

(−12)÷ (−6) = 2
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Question 1.2

The lowest temperature in the oceans, which corresponds to the freezing point, is
31.9 Celsius degrees colder than the highest recorded temperature, which is
30.0 ◦C.

Therefore, freezing point of seawater= 30.0 ◦C− 31.9 ◦C

= −1.9 ◦C
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Question 1.3 (a)

117− (−38)+ (−286)= −131
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Question 1.3 (b)

(−1624)÷ (−29)= 56
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Question 1.3 (c)

(−123)× (−24)= 2952
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Question 1.4 (a)

The lowest common denominator is 6, so

2
3
−

1
6
=

2× 2
3× 2

−
1
6
=

4
6
−

1
6
=

3
6

Dividing top and bottom by 3 gives

3
6
=

1
2

Alternatively,

2
3
−

1
6
=

2× 6
3× 6

−
1× 3
6× 3

=
12
18
−

3
18
=

9
18

Dividing top and bottom by 9 gives

9
18
=

1
2

as before.
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Question 1.4 (b)

The lowest common denominator is 30, so

1
3
+

1
2
−

2
5
=

1× 10
30

+
1× 15

30
−

2× 6
30

=
10
30
+

15
30
−

12
30

=
13
30
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Question 1.4 (c)

In this case, the lowest common denominator isn’t immediately obvious, but a
common denominator will certainly be given by the product of 3 and 28, so

5
28
−

1
3
=

5× 3
28× 3

−
1× 28
3× 28

=
15
84
−

28
84

= −
13
84
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Question 1.5 (a)

The original fraction,
4
16
=

1
4
= 0.25.

You may have chosen any number for your calculations. In this answer the number
2 is used, but the principles hold good whatever choice of (non-zero) number is
made.

Suppose we were to add 2 to the numerator and to the denominator

4+ 2
16+ 2

=
6
18
= 0.333 to three places of decimals

This is not the same as the original fraction. (There is just one special case in
which this kind of operation would not change the value of the fraction and that is
adding 0 to top and bottom, which obviously leaves the fraction unchanged.)
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Question 1.5 (b)

Suppose we were to subtract 2 from the numerator and from the denominator

4− 2
16− 2

=
2
14
= 0.143 to three places of decimals

This is not the same as the original fraction. (Again, subtracting 0 from top and
bottom is the only case in which this operation leaves the fraction unchanged.)
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Question 1.5 (c)

If we square the numerator and the denominator

4× 4
16× 16

=
16
256
= 0.0625

This is not the same as the original fraction.
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Question 1.5 (d)

If we take the square root of the numerator and of the denominator

√
4
√

16
=

2
4
= 0.5

This is not the same as the original fraction.

Incidentally, checking a general rule by trying out a specific numerical example is a
helpful technique, which will be useful for algebra in Chapter 4.
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Question 1.6 (a)

2
7
× 3 =

2× 3
7
=

6
7
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Question 1.6 (b)

5
9
÷ 7 =

5
9
×

1
7
=

5× 1
9× 7

=
5
63
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Question 1.6 (c)

1/6
1/3
=

1
6
÷

1
3
=

1
6
×

3
1
=

3
6
=

1
2
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Question 1.6 (d)

3
4
×

7
8
×

2
7
=

3× 7× 2
4× 8× 7

=
42
224

Dividing top and bottom by 2, and then by 7

42
224
=

21
112
=

3
16

Alternatively, the original could have been simplified in the same way before
carrying out any multiplication:

3

��42
×

��71

8
×

��21

��71
=

3
16
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Question 1.7 (a)

2−2 =
1

22
=

1
2× 2

=
1
4

You might have gone one step further and expressed this in decimal notation as
0.25.
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Question 1.7 (b)

1

3−3
= 33 = 3× 3× 3 = 27
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Question 1.7 (c)

1

40
=

1
1
= 1
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Question 1.7 (d)

1

104
=

1
10 000

= 0.000 1
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Question 1.8 (a)

29 = 512
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Question 1.8 (b)

3−3 =
1

33
= 0.037 to three places of decimals

It doesn’t matter if you quoted more digits in your answer than this. There is more
explanation in Chapter 2 about how and when to round off the values given on your
calculator display.
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Question 1.8 (c)

1

42
= 4−2 = 0.0625
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Question 1.9 (a)

230× 22 = 2(30+2) = 232
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Question 1.9 (b)

325× 3−9 = 3(25+(−9)) = 316
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Question 1.9 (c)

102/103 = 102 ÷ 103 = 10(2−3) = 10−1 (or 1/10)
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Question 1.9 (d)

102/10−3 = 102 ÷ 10−3 = 10(2−(−3)) = 105

or alternatively

102/10−3 = 102 ×
1

10−3
= 102 × 103 = 105
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Question 1.9 (e)

10−4 ÷ 102 = 10(−4−2) = 10−6
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Question 1.9 (f)

105 × 10−2

103
= 10(5+(−2)−3) = 100 (or 1)
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Question 1.10 (a)(
416

)2
= 416×2 = 432
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Question 1.10 (b)(
5−3

)2
= 5(−3)×2 = 5−6

This could also be written as
1

56
.
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Question 1.10 (c)(
1025

)−1
= 1025×(−1) = 10−25

This could also be written as
1

1025
.
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Question 1.10 (d)(
1

33

)6

=
16(
33)6 = 1

33×6
=

1

318

or alternatively(
1

33

)6

=
(
3−3

)6
= 3−3×6 = 3−18 =

1

318
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Question 1.11 (a)

FromEquation 1.3(
24

)1
2 = 2

(
4×1

2

)
= 22 = 4
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Question 1.11 (b)

FromEquation 1.3√
104 =

(
104

)1
2 = 104×1

2 = 102 = 100
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Question 1.11 (c)

FromEquation 1.3

100
3
2 =

(
100

1
2

)3
= 103 = 1000

Alternatively

100
3
2 =

(
1003

)1
2 =

(
106

)1
2 = 106/2 = 103 = 1000
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Question 1.11 (d)

125−1/3 =
1

1251/3
=

1
5
= 0.2

Since the cube root of 125 is 5.

Back 318



Contents �

Question 1.12 (a)

Multiplication takes precedence over subtraction, so

35− 5× 2 = 35− (5× 2)

= 35− 10

= 25
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Question 1.12 (b)

Here the brackets take precedence, so

(35− 5)× 2 = 30× 2

= 60
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Question 1.12 (c)

Again, the brackets take precedence over the (implied) multiplication, so

5(2− 3) = 5× (−1)

= −5
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Question 1.12 (d)

Here the exponent takes precedence:

3× 22 = 3× 4

= 12
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Question 1.12 (e)

The exponent takes precedence again:

23 + 3 = 8+ 3

= 11
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Question 1.12 (f)

Here both brackets take precedence over the (implied) multiplication:

(2+ 6)(1+ 2) = 8× 3

= 24
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Question 2.1 (a)

5.4× 104 = 5.4× 10 000

= 54 000
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Question 2.1 (b)

2.1× 10−2 = 2.1×
1

100

=
2.1
100

= 0.021
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Question 2.1 (c)

0.6× 10−1 = 0.6×
1
10

=
0.6
10

= 0.06
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Question 2.2 (a)

215= 2.15× 100

= 2.15× 102
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Question 2.2 (b)

46.7 = 4.67× 10

= 4.67× 101
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Question 2.2 (c)

152× 103 = 1.52× 100× 103

= 1.52× 102 × 103

= 1.52× 10(2+3)

= 1.52× 105
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Question 2.2 (d)

0.000 0876=
8.76

100 000

=
8.76

105

= 8.76× 10−5

Back 331



Contents �

Question 2.3 (a)

A kilometre is 103 times bigger than a metre, so

3476 km= 3.476× 103 km

= 3.476× 103 × 103 m

= 3.476× 106 m
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Question 2.3 (b)

A micrometre is 103 times bigger than a nanometre, so

8.0 µm = 8.0× 103 nm
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Question 2.3 (c)

A second is 103 times bigger than a millisecond, so

0.8 s= 0.8× 103 ms

To express this in scientific notation, we need to multiply and divide the right-hand
side by 10:

0.8× 103 ms= (0.8× 10)×
103

10
ms

= 8×
(
103 × 10−1

)
ms

= 8× 10(3−1) ms

= 8× 102 ms
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Question 2.4 (a)

One million= 106, so the distance is

5900× 106 km = 5.9× 109 km

∼ 1010 km (or 1013 m)
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Question 2.4 (b)

The diameter of a spherical object is given by twice its radius. So for the Sun,

diameter= 2× 6.97× 107 m

= 13.94× 107 m

= 1.394× 108 m

∼ 108 m
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Question 2.4 (c)

2π = 2× 3.14 (to two places of decimals)

= 6.28

This is greater than 5, so can be rounded up to the next power of ten to give the
order of magnitude, i.e. 2π ∼ 10 (or 101).

Back 337



Contents �

Question 2.4 (d)

7.31× 10−26 kg ∼ 10× 10−26 kg

∼ 10(−26+1) kg

∼ 10−25 kg
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Question 2.5 (a)

(i) 100 m = 1 m and 10−2 m = 0.01 m, so the difference between them is
(1− 0.01) m= 0.99 m.

(ii) 102 m = 100 m and 100 m = 1 m, so the difference between them is 99 m.

(iii) 104 m = 10 000 m and 102 m = 100 m, so the difference between them is
9900 m.

It is quite clear that as one goes up the scale the interval between each successive
pair of tick marks increases by 100 times.
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Question 2.5 (b)

The height of a child is about 100 m, i.e. 1 m. The height of Mount Everest is
about 104 m (actually 8800 m, but it is not possible to read that accurately from the
scale on Figure 2.2). So Mount Everest is∼104 times taller than a child.
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Question 2.5 (c)

The length of a typical virus is 10−8 m and the thickness of a piece of paper is
10−4 m, so it would take∼ 10−4/10−8 = 10−4−(−8) = 10−4+8 = 104 viruses laid end
to end to stretch across the thickness of a piece of paper.
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Question 2.6

Magnitude 7 on the Richter scale represents four points more than magnitude 3,
and each point increase represents a factor 10 increase in maximum ground
movement. So a magnitude 7 earthquake corresponds to 104 (i.e. 10 000) times
more ground movement than a magnitude 3 earthquake.
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Question 2.7

Each of the quantities is quoted to four significant figures.
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Question 2.8 (a)

The third digit is an 8, so the second digit must be rounded up:

−38.87 ◦C = −39 ◦C to two significant figures
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Question 2.8 (b)

There is no way of expressing a number greater than or equal to 100
unambiguously to two significant figures except by the use of scientific notation.
The third digit is a 5, so again the second digit must be rounded up.

−195.8 ◦C = −1.958× 102 ◦C

= −2.0× 102 ◦C to two significant figures

{Note that the final zero does count.}
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Question 2.8 (c)

Again, this quantity cannot be expressed unambiguously to two significant figures
without the use of scientific notation. The third digit is an 8, so the second digit
must be rounded up.

1083.4 ◦C = 1.0834× 103 ◦C

= 1.1× 103 ◦C to two significant figures
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Question 3.1

(inch)2, cm2 and square miles all have units of (length)2, so they are all units of
area.

s2 cannot be a unit of area because the unit which has been squared, the second, is
a unit of time not of length.

m−2 cannot be a unit of area because the metre is raised to the powerminus2, not 2.

km3 cannot be a unit of area because the kilometre is cubed not squared. In fact, it
is a unit of volume.
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Question 3.2 (a)

6.732
1.51

= 4.458= 4.46 to three significant figures.

{6.732 is known to four significant figures, and 1.51 is known to three significant
figures. The number of significant figures in the answer is the same as in the input
value with the fewest significant figures, i.e. three.}
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Question 3.2 (b)

2.0× 2.5 = 5.0 to two significant figures.

{2.0 and 2.5 are both given to two significant figures, so the answer is given to two
significant figures too.}
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Question 3.2 (c)

Working to three significant figures and rounding to two significant figures at the
end of the calculation gives:(

4.2
3.1

)2

= (1.35)2 = 1.82= 1.8 to two significant figures.

{Squaring is repeated multiplication, so it is reasonable to quote the final answer to
two significant figures. However, working to two significant figures throughout
introduces a sizeable rounding error and gives a final answer of 2.0.}
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Question 3.2 (d)

The total mass= 3× 1.5 kg= 4.5 kg.

{Note that you have exactly 3 bags of flour, so it would not be correct to round the
answer to one significant figure.}
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Question 3.3 (a)

(3.0× 106) × (7.0× 10−2) = (3.0× 7.0)× 106+(−2)

= 21× 104

= 2.1× 105

{Note that 21× 104 is a correct numerical answer to the multiplication, but it is not
given in scientific notation.}

Back 352



Contents �

Question 3.3 (b)

8× 104

4× 10−1
=

8
4
× 104−(−1) = 2× 105
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Question 3.3 (c)

104 × (4× 104)

1× 10−5
= 4×

104+4

10−5
= 4× 108−(−5) = 4× 1013
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Question 3.3 (d)

(
3.00× 108

)2
= (3.00)2 ×

(
108

)2

= 9.00× 108×2

= 9.00× 1016
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Question 3.4

Area=
(
9.78× 10−3 m

)2

=
(
9.78× 10−3

)2
m2

= 9.56× 10−5 m2 to three significant figures.
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Question 3.5

To one significant figure,

distance to Proxima Centauri≈ 4× 1016 m

distance to the Sun≈ 2× 1011 m

Thus,

distance to Proxima Centauri
distance to the Sun

≈
4× 1016 m

2× 1011 m

≈
4
2
×

1016 m

1011 m
≈ 2× 1016−11

≈ 2× 105

Thus Proxima Centauri is approximately 2× 105 times further away than the Sun.
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Question 3.6 (a)

1 m= 100 cm, so 1 m2 = 1002 cm2

Thus 1.04 m2 = 1.04× 1002 cm2 = 1.04× 104 cm2
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Question 3.6 (b)

1 m= 106 µm, so 1 m2 =
(
106

)2
µm2

Thus 1.04 m2 = 1.04×
(
106

)2
µm2 = 1.04× 1012 µm2
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Question 3.6 (c)

1 km= 103 m, so 1 km2 =
(
103

)2
m2

Thus 1 m2 =
1(

103)2 km2

and 1.04 m2 =
1.04(
103)2 km2 = 1.04× 10−6 km2
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Question 3.7 (a)

1 km= 103 m, so 1 km3 =
(
103

)3
m3 = 109 m3

Volume of Mars= 1.64× 1011 km3

= 1.64× 1011× 109 m3

= 1.64× 1020 m3
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Question 3.7 (b)

1 m= 103 mm, so 1 m3 =
(
103

)3
mm3 = 109 mm3

Thus 1 mm3 =
1

109
m3 = 10−9 m3

Volume of ball bearing= 16 mm3

= 16× 10−9 m3

= 1.6× 10−8 m3
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Question 3.8 (a)

1 m= 100 cm

So

1 cm=
1

100
m

Thus

1 cm day−1 =
1

100
m day−1

and

12 cm day−1 =
12
100

m day−1

= 0.12 m day−1
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Question 3.8 (b)

1 day= 24× 60× 60 s= 8.64× 104 s

So

1 cm day−1 =
1

8.64× 104
cm s−1

and

12 cm day−1 =
12

8.64× 104
cm s−1

= 1.4× 10−4 cm s−1
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Question 3.9 (a)

1 m= 103 mm, so 1 mm=
1

103
m = 10−3 m

1 year= 365× 24× 60× 60 s= 3.154× 107 s

To convert from mm year−1 m s−1 we need tomultiplyby 10−3 (to convert the mm
to m) anddivideby 3.154× 107 (to convert the year−1 to s−1).

1 mm year−1 =
10−3

3.154× 107
m s−1

so

0.1 mm year−1 = 0.1×
10−3

3.154× 107
m s−1

= 3× 10−12 m s−1 to one significant figure

So the stalactite is growing at about 3× 10−12 m s−1.

Back 365



Contents �

Question 3.9 (b)

1 m= 100 cm, so 1 cm=
1

100
m = 10−2 m

1 day= 24× 60× 60 s= 8.64× 104 s

To convert from cm day−1 to m s−1 we need tomultiplyby 10−2 (to convert the cm
to m) anddivideby 8.64× 104 (to convert the day−1 to s−1).

1 cm day−1 =
10−2

8.64× 104
m s−1

12 cm day−1 = 12×
10−2

8.64× 104
m s−1

= 1.4× 10−6 m s−1

So the glacier is moving at about 1.4× 10−6 m s−1.
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Question 3.9 (c)

1 km= 103 m

1 Ma= 106 × 365× 24× 60× 60 s= 3.154× 1013 s

To convert from km Ma−1 to m s−1, we need tomultiplyby 103 (to convert the km
to m) anddivideby 3.154× 1013 (to convert the Ma−1 to s−1).

1 km Ma−1 =
103

3.154× 1013
m s−1

35 km Ma−1 = 35×
103

3.154× 1013
m s−1

= 1.1× 10−9 m s−1 to two significant figures.

So the plates are moving apart at an average rate of 1.1× 10−9 m s−1.

Comparing the answers to parts (a), (b) and (c) shows that the tectonic plates are
moving apart approximately 300 times faster than the stalactite is growing. The
glacier under consideration moves about 1000 times faster still, but remember that
there is considerable variation in the speeds at which all of these processes take
place.
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Question 3.10 (a)

1 l = 103 ml

To convert fromµg l−1 to µg ml−1 we need todivideby 103.

1 µg l−1 =
1

103
µg ml−1 = 10−3 µg ml−1

10µg l−1 = 10× 10−3 µg ml−1

= 1.0× 10−2 µg ml−1 to two significant figures.
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Question 3.10 (b)

Note that 10µg l−1 = 10µg dm−3, since 1 litre is defined to be equal to 1 dm3

(Section 3.4.2).

1 mg= 103 µg

so

1 µg =
1

103
mg= 10−3 mg

To convert fromµg dm3 to mg dm3 we need tomultiplyby 10−3.

1 µg dm3 = 10−3 mg dm3

10µg dm3 = 10× 10−3 mg dm3

= 1.0× 10−2 mg dm3 to two significant figures.

So a concentration of 10µg l−1 is equal to 1.0× 10−2 mg dm3.
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Question 3.10 (c)

Note that 10µg l−1 = 10µg dm−3.

1 g= 106 µg

so 1µg =
1

106
g = 10−6 g

1 m= 10 dm

so 1 m3 = 103 dm3

and 1 dm3 =
1

103
m3 = 10−3 m3

To convert fromµg dm−3 to g m−3 we need tomultiplyby 10−6 (to convert theµg
to g) anddivideby 10−3 (to convert the dm−3 to m−3).

1 µg dm−3 =
10−6

10−3
g m−3
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10µg dm−3 = 10×
10−6

10−3
g m−3

= 10× 10−6−(−3) g m−3

= 10× 10−3 g m−3

= 1.0× 10−2 g m−3 to two significant figures.

So a concentration of 10µg l−1 is equal to 1.0× 10−2 g m−3.
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Question 3.11

(i) and (iii) are equivalent. Multiplication is commutative, sox(y+ z) = (y+ z)x

(ii) and (v) are equivalent. Both multiplication and addition are commutative, so
xy+ z= z+ yx

Note that (i) is not equivalent to (ii) since, in (i), the whole of (y+ z), not justy, is
multiplied byx.

Substitutingx = 3, y = 4 andz= 5 gives

(i) a = x(y+ z) = 3× (4+ 5) = 27

(ii) a = xy+ z= (3× 4)+ 5 = 17

(iii) a = (y+ z)x = (4+ 5)× 3 = 27

(iv) a = x+ yz= 3+ (4× 5) = 23

(v) a = z+ yx= 5+ (4× 3) = 17
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Question 3.12

The equivalent equations are (i) and (iii), since

a
bc2

d
=

abc2

d
=

bac2

d

Note that only thec is squared, so (ii)m= a
b2c2

d
and (v)m=

b2a2c2

d
are different.

Only the numerator of the fraction is multiplied bya, so (iv)m=
abc2

ad
is different

too.
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Question 3.13

NPP= 1.06× 108 kJ

R= 3.23× 107 kJ

FromEquation 3.8,

GPP= NPP+ R

= 1.06× 108 kJ+ 3.23× 107 kJ

= 1.38× 108 kJ to three significant figures.
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Question 3.14

λ = 621 nm, f = 4.83× 1014 Hz

Converting to SI base units gives

λ = 621× 10−9 m = 6.21× 10−7 m

f = 4.83× 1014 Hz = 4.83× 1014 s−1

FromEquation 3.13,

v = fλ

= 4.83× 1014 s−1 × 6.21× 10−7 m

= 3.00× 108 m s−1 to three significant figures.

{Note that this is the speed of light in a vacuum. Light of this frequency and
wavelength is in the red part of the visible spectrum.}
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Question 3.15 (a)

FromEquation 3.5

V =
4
3
π r3

r = 6.38× 103 km = 6.38× 103 × 103 m = 6.38× 106 m

So

V =
4
3
π

(
6.38× 106 m

)3

= 1.09× 1021 m3 to three significant figures.

The Earth’s volume is 1.09× 1021 m3.
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Question 3.15 (b)

FromEquation 3.18

Fg = G
m1m2

r2

G = 6.673× 10−11 N m2 kg−2

m1 = 5.97× 1024 kg

m2 = 7.35× 1022 kg

r = 3.84× 105 km

= 3.84× 105 × 103 m

= 3.84× 108 m

Substituting values into the equation gives

Fg = 6.673× 10−11 N m2 kg−2 ×
5.97× 1024 kg× 7.35× 1022 kg(

3.84× 108 m
)2

Rearranging to collect the units together

Fg =
6.673× 10−11× 5.97× 1024× 7.35× 1022 N m2 kg−2 kg kg(

3.84× 108)2 m2
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Many of the units can be cancelled

Fg =
6.673× 10−11× 5.97× 1024× 7.35× 1022 N��m2

���kg−2
��kg��kg(

3.84× 108)2 ��m2

Calculating the numeric value gives

Fg = 1.99× 1020 N to 3 significant figures.

{Note that there was no need to express the newtons in terms of base units on this
occasion; all the other units cancelled to leave N as the units of force, as expected.}

The magnitude of the gravitational force between the Earth and the Moon is
1.99× 1020 N.
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Question 4.1 (a)

v = fλ can be reversed to givefλ = v.

To isolatef we need to removeλ, and f is currentlymultipliedby λ so, according
to Hint 3, we need todivideby λ. Remember that we must do this toboth sides of
the equation, so we have

fλ
λ
=

v
λ

Theλ in the numerator of the fraction on the left-hand side cancels with theλ in
the denominator to give

f =
v
λ
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Question 4.1 (b)

Etot = can be reversed to giveEk + Ep = Etot.

To isolateEk we need to removeEp, andEp is currentlyaddedto Ek so, according
to Hint 1, we need tosubtract Ep. Remember that we must do this toboth sides of
the equation, so we have

Ek + Ep − Ep = Etot − Ep

Ep − Ep = 0, so

Ek = Etot − Ep
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Question 4.1 (c)

ρ =
m
V

can be reversed to give
m
V
= ρ

To isolatemwe need to removeV, andm is currentlydividedby V so, according to
Hint 4, we need tomultiplyby V. Remember that we must do this toboth sides of
the equation, so we have

mV
V
= ρV

TheV in the numerator of the fraction on the left-hand side cancels with theV in
the denominator to give

m= ρV
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Question 4.2 (a)

b = c− d + ecan be written asc− d + e= b (with eon the left-hand side).

Addingd to both sides gives

c− d + e+ d = b+ d

i.e.

c+ e= b+ d

Subtractingc from both sides gives

c+ e− c = b+ d − c

i.e.

e= b+ d − c.
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Question 4.2 (b)

p = ρghcan be written asρgh= p (with h on the left-hand side).

Dividing both sides byρ gives

ρgh
ρ
=

p
ρ

i.e.

gh=
p
ρ

Dividing both sides byg gives

gh
g
=

p
ρg

i.e.

h =
p
ρg
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Question 4.2 (c)

v2
esc=

2GM
R

Multiplying both sides byR (to getRonto the left-hand side) gives

v2
escR=

2GMR
R

= 2GM

Dividing both sides byv2
escgives

v2
escR

v2
esc
=

2GM

v2
esc

i.e.

R=
2GM

v2
esc
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Question 4.2 (d)

E = h f − φ

Addingφ to both sides (to getφ onto the left-hand side) gives

E + φ = h f − φ + φ

i.e.

E + φ = h f

SubtractingE from both sides gives

E + φ − E = h f − E

that is

φ = h f − E
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Question 4.2 (e)

We need to start by finding an equation forc2.

a =
bc2

d
can be written as

bc2

d
= a (with c on the left-hand side).

Multiplying both sides byd gives

bc2d
d
= ad

i.e.

bc2 = ad

Dividing both sides byb gives

bc2

b
=

ad
b

i.e.

c2 =
ad
b

Taking the square root of both sides gives

c = ±

√
ad
b
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Question 4.2 (f)

a =

√
b
c

can be written as

√
b
c
= a (with b on the left-hand side)

Squaring both sides gives

b
c
= a2

Multiplying both sides byc gives

bc
c
= a2c

i.e.

b = a2c
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Question 4.3 (a)

We need to start by finding an equation forv2.

Ek =
1
2mv2 can be written as12mv2 = Ek. (with thev2 on the left-hand side).

Multiplying both sides by 2 gives

mv2 = 2Ek

Dividing both sides bym gives

v2 =
2Ek

m

Taking the square root of both sides gives

v = ±

√
2Ek

m

but we are only interested in the positive value on this occasion.
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Question 4.3 (b)

If Ek = 2× 103 J andm= 4× 1021 kg

v =

√
2Ek

m

=

√
2× 2× 103 J

4× 1021 kg

=

√
1× 10−18 ��kg m2 s−2

��kg

= 1× 10−9 m s−1

{At this speed, the plate would move 3 cm in a year.}
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Question 4.3 (c)

If Ek = 2× 103 J andm= 70 kg

v =

√
2Ek

m

=

√
2× 2× 103 J

70 kg

= 8 m s−1

{The sprinter, having a smaller mass, has to move rather faster than the tectonic
plate!}
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Question 4.4 (a)

vx = ux + axt can be written as

ux + axt = vx

Subtractingux from both sides gives

axt = vx − ux

Dividing both sides byt gives

ax =
vx − ux

t
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Question 4.4 (b)

Squaring both sides ofvs =

√
µ

ρ
gives

v2
s =
µ

ρ

Multiplying both sides byρ gives

ρ v2
s = µ

Dividing both sides byv2
s gives

ρ =
µ

v2
s
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Question 4.4 (c)

Multiplying both sides ofF =
L

4πd2
by d2 gives

Fd2 =
L

4π

Dividing both sides byF gives

d2 =
L

4π F

Taking the square root of both sides gives

d = ±

√
L

4π F

{Note that if we consider just the positive value, we have arrived atEquation 3.20,
albeit written rather differently.}
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Question 4.5 (a)

µ0

2π
×

i1i2
d
=
µ0 × i1i2
2π × d

=
µ0i1i2
2πd
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Question 4.5 (b)

Note that
3a
2b

/
2 means

3a
2b

divided by 2.

3a
2b

/
2 =

3a
2b
×

1
2
=

3a
4b
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Question 4.5 (c)

The productc× b will be a common denominator, so we can write

2b
c
+

3c
b
=

2b× b
c× b

+
3c× c
b× c

=
2b2 + 3c2

cb

This is the simplest form in which this fraction can be expressed.
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Question 4.5 (d)

2ab
c
÷

2ac
b
=

2ab
c
×

b
2ac

Cancelling the ‘2a’s gives

2ab
c
÷

2ac
b
=

��2ab
c
×

b

��2ac
=

b2

c2

{Note that, for all parts of Question 4.5 and for many other questions involving
simplification, it is possible to check that the algebraic expression you end up with
is equivalent to the one that you started with by substituting numerical values for
the variables. For example, settinga = 2, b = 3 andc = 4 in the original expression
gives

2ab
c
÷

2ac
b
=

(
2× 2× 3

4

)
÷

(
2× 2× 4

3

)
=

12
4
÷

16
3
= 3÷

16
3
= 3×

3
16
=

9
16

Substituting the same values in the answer gives
b2

c2
=

32

42
=

9
16

}
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Question 4.5 (e)

The productf ( f + 1) will be a common denominator, so we can write

1
f
−

1
f + 1

=
( f + 1)
f ( f + 1)

−
f

( f + 1) f

=
f + 1− f
f ( f + 1)

=
1

f ( f + 1)
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Question 4.5 (f)

2b2

(b+ c)
÷

2c2

(a+ c)
=

AA2b2

(b+ c)
×

(a+ c)

AA2c2

=
b2(a+ c)

c2(b+ c)

The expression can be written as

(
b
c

)2 (a+ c)
(b+ c)

but cannot be simplified further.
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Question 4.6

The equation can be written as

1
f
=

1
u
+

1
v

=
v
uv
+

u
vu

(taking the productuvas the common denominator)

=
v+ u
uv

Taking the reciprocal of both sides of the equation gives

f =
uv

v+ u
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Question 4.7 (a)

1
2

(vx + ux) t =
1
2

vxt +
1
2

uxt

or alternatively

1
2

(vx + ux) t =
vxt
2
+

uxt
2

or
vxt + uxt

2
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Question 4.7 (b)

(a− b) − (a− c)
2

=
a− b− a+ c

2

=
c− b

2

sincea− a = 0, and−b+ c is more tidily written asc− b.
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Question 4.7 (c)

(k − 2)(k − 3) = k 2 − 3k − 2k + 6

= k 2 − 5k + 6
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Question 4.7 (d)

(t − 2)2 = (t − 2)(t − 2)

= t
2 − 2t − 2 t + 4

= t
2 − 4t + 4
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Question 4.8 (a)

y2 − y = y (y− 1)

Back 405



Contents �

Question 4.8 (b)

x2 − 25= (x+ 5)(x− 5), by comparison withEquation 4.3.

We can check that the factorization is correct by multiplying the brackets out. This
gives

(x + 5)( x − 5) = x
2 − 5x + 5x − 25

= x
2 − 25
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Question 4.9

Both the terms on the right-hand side ofEtot =
1
2mv2 +mg∆h includem, so we can

rewrite the equation as

Etot = m
(

1
2v2 + g∆h

)
Reversing the order gives

m
(

1
2v2 + g∆h

)
= Etot

Dividing both sides by
(

1
2v2 + g∆h

)
gives

m=
Etot

1
2v2 + g∆h

This is a perfectly acceptable equation form, but the fraction in the denominator
looks a little untidy. Multiplying the numerator and denominator by 2 gives

m=
2Etot

v2 + 2g∆h
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Question 4.10 (a)

From the answer toQuestion 4.7 (c)

k2 − 5k+ 6 = (k− 2)(k− 3)

Thus, ifk2 − 5k+ 6 = 0, then (k− 2)(k− 3) = 0 too,
sok− 2 = 0 ork− 3 = 0.
i.e. k = 2 ork = 3

Checking fork = 2:
k2 − 5k+ 6 = 22 − (5× 2)+ 6 = 4− 10+ 6 = 0, as expected.
Checking fork = 3:
k2 − 5k+ 6 = 32 − (5× 3)+ 6 = 9− 15+ 6 = 0, as expected.

So the solutions of the equationk2 − 5k+ 6 = 0 arek = 2 andk = 3.
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Question 4.10 (b)

From the answer toQuestion 4.7 (d)

t2 − 4t + 4 = (t − 2)2

Thus, if t2 − 4t + 4 = 0, then (t − 2)2 = 0 too,
sot − 2 = 0,
i.e. t = 2.

Checking:
t = 2 givest2 − 4t + 4 = 22 − (4× 2)+ 4 = 4− 8+ 4 = 0, as expected.

So the solution of the equationt2 − 4t + 4 = 0 is t = 2.
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Question 4.10 (c)

Comparison ofk2 − 5k+ 6 = 0 with ax2 + bx+ c = 0 shows thata = 1, b = −5 and
c = 6 on this occasion, so the solutions are

k =
−b±

√
b2 − 4ac

2a

=
−(−5)±

√
(−5)2 − (4× 1× 6)

2× 1

=
5±
√

25− 24
2

=
5± 1

2

sok =
5+ 1

2
=

6
2
= 3 ork =

5− 1
2
=

4
2
= 2.

So the solutions of the equationk2 − 5k+ 6 = 0 arek = 2 andk = 3. This is the
same answer as was obtained inpart (a)and could be checked in the same way.
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Question 4.10 (d)

Comparison oft2 − 4t + 4 = 0 with ax2 + bx+ c = 0 shows thata = 1, b = −4 and
c = 4 on this occasion, so the solutions are

k =
−b±

√
b2 − 4ac

2a

=
−(−4)±

√
(−4)2 − (4× 1× 4)

2× 1

=
4±
√

16− 16
2

=
4± 0

2
= 2

So there is just one solution tot2 − 4t + 4 = 0; namelyt = 2. This is the same
answer as was obtained inpart (b)and could be checked in the same way.
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Question 4.11 (a)

Rearrangingp = mvto makev the subject gives

v =
p
m

(dividing both sides bym)

Substituting inEk =
1
2mv2 gives

Ek =
1
2m

( p
m

)2

= 1
2m

p2

m2

=
p2

2m
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Question 4.11 (b)

Since both equations are already written withE (the variable we are trying to
eliminate) as the subject, we can simply set the two equations forE equal to each
other:

1
2mv2 = mg∆h

There is anm on both sides of the equation; dividing both sides of the equation by
m gives

1
2v2 = g∆h

Multiplying both sides of the equation by 2 gives

v2 = 2g∆h

Taking the square root of both sides of the equation gives

v = ±
√

2g∆h
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Question 4.11 (c)

Rearrangingc = fλ to makef the subject gives

f =
c
λ

(dividing both sides byλ)

Substituting inEk = h f − φ gives

Ek =
hc
λ
− φ

Addingφ to both sides of the equation gives

Ek + φ =
hc
λ

SubtractingEk from both sides gives

φ =
hc
λ
− Ek

Back 414



Contents �

Question 4.12

Let the number selected be represented byx:

Adding 5 gives x+ 5

Doubling the result gives 2(x+ 5) = 2x+ 10

Subtracting 2 gives (2x+ 10)− 2 = 2x+ 8

Dividing by 2 gives
2x+ 8

2
= x+ 4

Taking away the number you first thought of gives (x+ 4)− x = 4.
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Question 4.13

Let H represent Helen’s height in cm andT represent Tracey’s height
in cm. Since Tracey is 15 cm taller than Helen we can write

T = H + 15 (i)

The height of the wall is equal to Tracey’s height up to her shoulders
(T − 25) plus Helen’s height up to her eyes (H − 10), thus

(T − 25)+ (H − 10)= 300 (ii)

Simplifying (ii) gives

T + H − 35= 300

Adding 35 to both sides gives

T + H = 335

Substituting forT from (i) gives

(H + 15)+ H = 335

2H + 15= 335

T − 25

wall H − 10

Tracey

Helen

H

T
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Subtracting 15 from both sides gives

2H = 320

Dividing both sides by 2 gives

H = 160

i.e. Helen is 160 cm tall.
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Question 4.14

The equations required areEg = mg∆h (Equation 4.18) andEk =
1
2mv2 (Equation

4.17).

Assuming that the child’s gravitational potential energy is converted into kinetic
energy,Ek = Eg.

1
2mv2 = mg∆h

Dividing both sides bym gives

1
2v2 = g∆h

Multiplying both sides by 2 gives

v2 = 2g∆h

Taking the square root of both sides gives

v = ±
√

2g∆h

On this occasion we are only interested in the positive square root, i.e.v =
√

2g∆h
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Substituting∆h = 1.8 m andg = 9.81 m s−2 gives

v =
√

2× 9.81 m s−2 × 1.8 m

= 5.9 m s−1 to two significant figures

(noting that
√

m2 s−1 = m s−1).

Checking

The units have worked out to be m s−1, as expected.

An estimated value is

v ≈
√

2× 10 m s−2 × 2 m

≈
√

40 m2 s−2

≈ 6 m s−1, since
√

40≈
√

36

The speed seems quite high; in reality not all of the child’s gravitational potential
energy would be converted into kinetic energy.
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Figure 2.1: Portions of the number line, showing the positions of a few large and
small numbers expressed in scientific notation.
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Lengthin metres
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Figure 2.2: The scale of the known Universe.
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soundlevel in dB

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Thresholdof
humanhearing

Rustlingleaves

Quietwhisper

Pedestrianizedcity street

Ordinaryconversation

Alarm clock

Foodblender

Undergroundtrain

Rockgroup

Thresholdof pain

Pneumaticdrill (at 2m)

Jettakingoff (at 30m)

Figure 2.3: Some common sounds on the decibel scale of sound level.
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length in mm

in km3
volumevolume volume

in mm3 in m3

to convert divide by (103)3 to convert divide by (103)3

to convert multiply by (10
3 )3 to convert multiply by (10

3 )3

area
in km2

areaarea
in mm2 in m2

to convert multiply by (10
3 )2 to convert multiply by (10

3 )2

to convert divide by (103)2 to convert divide by (103)2

to convert multiply by 10
3

to convert divide by 103

length in m length in km

to convert multiply by 10
3

to convert divide by 103

Figure 3.8: Unit conversions for length, area and volume.
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u
x
 = 1.5m  s

−1

a
x
 = 9.81 m s

−2

Figure 3.11: A stone being thrown from a cliff.
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c = a + b

(a)

c + 50 = a + b + 50

(b)

c

2
=

a + b

2

(c)

Figure 4.1: (a) The analogy between an equation and a set of kitchen scales. The
scales remain balanced if (b) 50 g is added to both sides or if (c) the weight on both
sides is halved.
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Figure 4.2: A Hertzsprung–Russell diagram showing the Sun and a number of other
stars.
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P−wave arrival S−wave arrival

20seconds time

Figure 4.4: Seismogram recorded at the British Geological Survey in Edinburgh on
12 September 1988 at 2.23 p.m.
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Box 3.4 Some scientific formulae

C = 2π r (3.3)

whereC is the circumference of a circle of radiusr.

A = π r2 (3.4)

whereA is the area of a circle of radiusr.

V =
4
3
π r3 (3.5)

whereV is the volume of a sphere of radiusr.

F = ma (3.6)

whereF is the magnitude of force on an object,m is its mass anda is the
magnitude of its acceleration.
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E = mc2 (3.7)

whereE is energy,m is mass andc is the speed of light.

GPP= NPP+ R (3.8)

whereGPP is the gross primary production of energy by plants in an ecosys-
tem,NPP is net primary production andR is energy used in plant respiration.

ρ =
m
V

(3.9)

whereρ is the density of an object of massm and volumeV.

vs =

√
µ

ρ
(3.10)

wherevs is the speed of an S wave travelling through rocks of densityρ and
rigidity modulusµ.
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P = ρgh (3.11)

whereP is the pressure at depthh in a liquid of densityρ, andg is the acceler-
ation due to gravity.

PV = nRT (3.12)

whereP is the pressure ofn moles of a gas in a container of volumeV held at
temperatureT andR is a constant called the gas constant.

v = fλ (3.13)

wherev is the speed of a wave,f is its frequency andλ is its wavelength.

q = mc∆T (3.14)

whereq is the heat transferred to an object,m is its mass,c is its specific heat
capacity and∆T is the change in its temperature.
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vav =
vi + vf

2
(3.15)

wherevav is average speed,vi is initial speed andvf is final speed.

vx = ux + axt (3.16)

whereux, vx andax are respectively initial speed, final speed and acceleration,
all in the direction of thex-axis, andt is time.

sx = uxt +
1
2

axt
2 (3.17)

wheresx, ux andax are respectively distance, initial speed and acceleration, all
in the direction of thex-axis, andt is time.

Fg = G
m1m2

r2
(3.18)

whereFg is the magnitude of the gravitational force between two objects of
massesm1 andm2, a distancer apart.G is a constant called Newton’s universal
gravitational constant.
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vesc=

(
2GM

R

)1/2

(3.19)

wherevescis the escape speed, i.e. the speed with which an object must be fired
from the surface of a planet of massM and radiusR in order just to escape from
it. G is Newton’s universal gravitational constant.

d = [L/ (4π F)]1/2 (3.20)

whered is the distance at which light from a star of luminosityL has a flux
density ofF.

Return toSection 3.5.2
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alpha A α nu (new) N ν

beta B β xi (csi) Ξ ξ

gamma Γ γ omicron O o

delta ∆ δ pi (pie) Π π

epsilon E ε rho (roe) P ρ

zeta Z ζ sigma Σ σ

eta H η tau (taw) T τ

theta Θ θ upsilon Y υ

iota I ι phi (fie) Φ φ

kappa K κ chi (kie) X χ

lambda Λ λ psi Ψ ψ

mu (mew) M µ omega Ω ω

Table 3.1: The Greek alphabet. The pronunciation is given in parentheses where it
is not obvious.
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